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Introduction 
The diversity of compute-intensive applications running in modern cloud data centers has driven 
the explosion of NVIDIA GPU-accelerated cloud computing. Such intensive applications include 
AI deep learning training and inference, data analytics, scientif ic computing, genomics, edge 
video analytics and 5G services, graphics rendering, cloud gaming, and many more. From 
scaling-up AI training and scientif ic computing, to scaling-out inference applications, to enabling 
real-time conversational AI, NVIDIA GPUs provide the necessary horsepower to accelerate 
numerous complex and unpredictable workloads running in today’s cloud data centers. 

NVIDIA® GPUs are the leading computational engines powering the AI revolution, providing 
tremendous speedups for AI training and inference workloads. In addition, NVIDIA GPUs 
accelerate many types of HPC and data analytics applications and systems, allowing customers 
to effectively analyze, visualize, and turn data into insights. NVIDIA’s accelerated computing 
platforms are central to many of the world’s most important and fastest-growing industries. 

HPC has grown beyond supercomputers running computationally-intensive applications such as 
weather forecasting, oil & gas exploration, and financial modeling. Today, millions of NVIDIA 
GPUs are accelerating many types of HPC applications running in cloud data centers, servers, 
systems at the edge, and even deskside workstations, servicing hundreds of industries and 
scientif ic domains. 

AI networks continue to grow in size, complexity, and diversity, and the usage of AI-based 
applications and services is rapidly expanding. NVIDIA GPUs accelerate numerous AI systems 
and applications including: deep learning recommendation systems, autonomous machines 
(self-driving cars, factory robots, etc.), natural language processing (conversational AI, real-time 
language translation, etc.), smart city video analytics, software-defined 5G networks (that can 
deliver AI-based services at the Edge), molecular simulations, drone control, medical image 
analysis, and more. 
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Diverse and computationally-intensive workloads in modern cloud data centers require NVIDIA 
GPU acceleration 

Figure 1. Modern cloud datacenter workloads require NVIDIA GPU 
acceleration 

 

In 2017, the NVIDIA Tesla® V100 GPU introduced powerful new “Tensor Cores” that provided 
tremendous speedups for the matrix computations at the heart of deep learning neural network 
training and inferencing operations. In 2018, the NVIDIA Tesla® T4 GPU using NVIDIA Turing™ 
Tensor Cores and the Tensor RT™ inference optimizer and runtime brought significant 
speedups to data center inferencing with energy-efficient performance. Turing Tensor Cores 
also enabled amazing new AI capabilities in Turing GPU-based GeForce® gaming PCs and 
Quadro® workstations.  

On the industry-standard MLPerf AI benchmark, NVIDIA Volta™ GPUs delivered winning 
results in the training categories, while Turing GPUs won the data center and edge categories in 
the recently introduced MLPerf inferencing benchmarks. NVIDIA Jetson AGX Xavier™ also 
delivered the best inferencing performance of all commercially available SoC devices. 

For over a decade, the NVIDIA CUDA® development platform has unleashed the power of 
GPUs to accelerate a wide variety of application areas. Innovations and improvements in APIs, 
software stacks, libraries, and code optimizers are just as important as advancements in GPU 
hardware. The NVIDIA CUDA Toolkit, provides numerous software tools for developers, 
including the NVIDIA CUDA-X™ GPU-accelerated libraries for AI, HPC, and data analytics. Also 
many containers for AI frameworks and HPC applications, including models and scripts, are 
available for free in the NVIDIA GPU Cloud™ (NGC) to simplify programming and speed up 

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/gpu-accelerated-libraries
https://ngc.nvidia.com/catalog/all
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development and deployment of GPU-accelerated applications. Kubernetes on NVIDIA GPUs is 
also available for free to enable enterprises to seamlessly scale up and scale out training and 
inference deployments across multi-cloud GPU clusters. 

Introducing NVIDIA A100 Tensor Core GPU - our 8th Generation 
Data Center GPU for the Age of Elastic Computing 
The new NVIDIA® A100 Tensor Core GPU builds upon the capabilities of the prior NVIDIA 
Tesla V100 GPU, adding many new features while delivering significantly faster performance for 
HPC, AI, and data analytics workloads. Powered by the NVIDIA Ampere architecture-based 
GA100 GPU, the A100 provides very strong scaling for GPU compute and deep learning 
applications running in single- and multi-GPU workstations, servers, clusters, cloud data 
centers, systems at the edge, and supercomputers. The A100 GPU enables building elastic, 
versatile, and high throughput data centers. 

The A100 GPU includes a revolutionary new “Multi-Instance GPU” (or MIG) virtualization and 
GPU partitioning capability that is particularly beneficial to Cloud Service Providers (CSPs). 
When configured for MIG operation, the A100 permits CSPs to improve utilization rates of their 
GPU servers, delivering up to 7x more GPU Instances for no additional cost. Robust fault 
isolation allows customers to partition a single A100 GPU safely and securely. 

A100 adds a powerful new Third-Generation Tensor Core that boosts throughput over V100 
while adding comprehensive support for DL and HPC data types, together with a new Sparsity 
feature to deliver a further doubling of throughput.  

New TensorFloat-32 (TF32) Tensor Core operations in A100 provide an easy path to accelerate 
FP32 input/output data in DL frameworks and HPC, running 10x faster than V100 FP32 FMA 
operations or 20x faster with sparsity. For FP16/FP32 mixed-precision DL, the A100 Tensor 
Core delivers 2.5x the performance of V100, increasing to 5x with sparsity.  

New Bfloat16 (BF16)/FP32 mixed-precision Tensor Core operations run at the same rate as 
FP16/FP32 mixed-precision. Tensor Core acceleration of INT8, INT4, and binary round out 
support for DL inferencing, with A100 sparse INT8 running 20x faster than V100 INT8. For HPC, 
the A100 Tensor Core includes new IEEE-compliant FP64 processing that delivers 2.5x the 
FP64 performance of V100. 

 

https://developer.nvidia.com/kubernetes-gpu
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Figure 2. New Technologies in NVIDIA A100 

The A100 GPU is designed for broad performance scalability. Customers can share a single 
A100 using MIG GPU partitioning technology, or use multiple A100 GPUs connected by the new 
Third-generation NVIDIA NVLink® high-speed interconnect in powerful new NVIDIA DGX™, 
NVIDIA HGX™, and NVIDIA EGX™ systems. A100-based systems connected by the new 
NVIDIA NVSwitch™ and Mellanox® state-of-the-art InfiniBand™ and Ethernet solutions can be 
scaled out to tens, hundreds, or thousands of A100s in compute clusters, cloud instances, or 
immense supercomputers to accelerate many types of applications and workloads. Additionally, 
the A100 GPU’s revolutionary new hardware capabilities are enhanced by new CUDA 11 
features that improve programmability and reduce AI and HPC software complexity. 

The NVIDIA A100 GPU is the first elastic GPU architecture with the ability to scale-up to giant 
GPUs using NVLink, NVSwitch, and InfiniBand, or scale-out to support multiple independent 
users with MIG, simultaneously achieving great performance and lowest cost per-GPU instance. 

The NVIDIA A100 Tensor Core GPU delivers the greatest generational leap in NVIDIA GPU 
accelerated computing ever.     
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NVIDIA A100 Tensor Core GPU Overview 

Next-generation Data Center and Cloud GPU 
Increasingly complex and varied AI, HPC, and data analytics workloads require additional GPU 
computing power, multi-GPU connectivity enhancements, and a comprehensive suite of 
supporting software stacks. NVIDIA meets these growing GPU computing challenges with the 
new NVIDIA A100 Tensor Core GPU based on the NVIDIA Ampere GPU architecture, 
combined with new CUDA software advances.  

The A100 GPU includes many core architecture enhancements that deliver significant speed-
ups for AI, HPC, and data analytics workloads compared to V100, as explained throughout this 
paper. The new Sparsity feature further accelerates math operations by up to 2x. High-
bandwidth HBM2 memory and larger, faster caches feed data to the increased numbers of 
CUDA Cores and Tensor Cores.  

The new Third-generation NVLink and PCIe Gen 4 speed up multi-GPU system configurations. 
Many other enhancements enable strong scaling for hyperscale data centers, and robust Multi-
Instance GPU (MIG) virtualization for Cloud Service Provider (CSP) systems and their 
customers. NVIDIA Ampere architecture also improves ease of programming, while lowering 
latencies, and reducing AI and HPC software complexity. NVIDIA Ampere architecture GPUs 
deliver all these new features with greater performance per watt than the prior generation 
NVIDIA Volta GPUs. 

The NVIDIA A100 GPU is architected to not only accelerate large complex workloads, but also 
efficiently accelerate many smaller workloads. A100 enables building data centers that can 
accommodate unpredictable workload demand, while providing fine-grained workload 
provisioning, higher GPU utilization, and improved TCO. 
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Figure 3. NVIDIA A100 GPU on new SXM4 Module 

A100’s versatility helps infrastructure managers maximize the utility of every GPU in their data 
center to meet different-sized performance needs, from the smallest job to the biggest multi-
node workload. A100 powers the NVIDIA data center platform that includes Mellanox HDR 
InfiniBand (IB), NVSwitch, HGX A100, and the Magnum IO SDK for scaling up. This integrated 
team of technologies efficiently scales to tens of thousands of GPUs to train the most complex 
AI networks at unprecedented speed.  

Diffusing accelerated computing within enterprise and cloud environments demands high 
utilization on small workloads. With the new Multi-Instance GPU technology, each A100 can be 
divided into as many as seven GPU Instances for optimal utilization and to expand access to 
every user and application. 

Industry-leading Performance for AI, HPC, and Data Analytics 
The NVIDIA A100 GPU delivers exceptional speedups over V100 for AI training and inference 
workloads as shown in Figure 4. Similarly, Figure 5 shows substantial performance 
improvements across different HPC applications.  
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A100 GPU performance in BERT deep learning training and inference scenarios compared to NVIDIA 
Tesla V100 and NVIDIA Tesla T4. 

Figure 4. Unified AI Acceleration for BERT-LARGE Training and Inference 
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Figure 5. A100 GPU HPC application speedups compared to NVIDIA Tesla 
V100 

A100 GPU Key Features Summary 
The NVIDIA A100 Tensor Core GPU is the world’s fastest cloud and data center GPU 
accelerator designed to power computationally-intensive AI, HPC, and data analytics 
applications.  

Fabricated on TSMC’s 7nm N7 manufacturing process, the NVIDIA Ampere architecture-based 
GA100 GPU that powers A100 includes 54.2 billion transistors with a die size of 826 mm2.  

A high-level summary of key A100 features is provided below for a quick understanding of the 
important new A100 technologies and performance levels. In-depth architecture information is 
presented in subsequent sections. 
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A100 GPU Streaming Multiprocessor (SM)  

The new SM in the NVIDIA Ampere architecture-based A100 Tensor Core GPU significantly 
increases performance, builds upon features introduced in both the Volta and Turing SM 
architectures, and adds many new capabilities.  

The A100 Third-Generation Tensor Cores enhance operand sharing and improve efficiency, 
and add powerful new data types including: 

● TF32 Tensor Core instructions which accelerate processing of FP32 data 
● IEEE-compliant FP64 Tensor Core instructions for HPC 
● BF16 Tensor Core instructions at the same throughput as FP16  

Table 1. NVIDIA A100 Tensor Core GPU Performance Specs 

Peak FP641 9.7 TFLOPS 

Peak FP64 Tensor Core1 19.5 TFLOPS 

Peak FP321 19.5 TFLOPS 

Peak FP161 78 TFLOPS 

Peak BF161 39 TFLOPS 

Peak TF32 Tensor Core1  156 TFLOPS | 312 TFLOPS2 

Peak FP16 Tensor Core1 312 TFLOPS | 624 TFLOPS2 

Peak BF16 Tensor Core1 312 TFLOPS | 624 TFLOPS2 

Peak INT8 Tensor Core1 624 TOPS | 1,248 TOPS2 

Peak INT4 Tensor Core1 1,248 TOPS | 2,496 TOPS2 

1 - Peak rates are based on GPU Boost Clock. 
2 - Effective TFLOPS / TOPS using the new Sparsity feature 
 

New Sparsity support in A100 Tensor Cores can exploit f ine-grained structured sparsity in deep 
learning networks to double the throughput of Tensor Core operations. Sparsity features are 
described in detail in the “A100 Introduces Fine-Grained Structured Sparsity” section below.  

The larger and faster L1 cache and shared memory unit in A100 provides 1.5x the aggregate 
capacity per SM compared to V100 (192 KB vs 128 KB per SM) to deliver additional 
acceleration for many HPC and AI workloads.  

A number of other new SM features improve programmability and reduce software complexity. 
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40 GB HBM2 and 40 MB L2 Cache 

To feed its massive computational throughput, the NVIDIA A100 GPU has 40 GB of high-speed 
HBM2 memory with a class-leading 1555 GB/sec of memory bandwidth - a 73% increase 
compared to Tesla V100. In addition, the A100 GPU has significantly more on-chip memory 
including a 40 MB Level 2 (L2) cache - nearly 7x larger than V100 - to maximize compute 
performance. With a new partitioned crossbar structure, the A100 L2 cache provides 2.3x the L2 
cache read bandwidth of V100.  

To optimize capacity utilization, the NVIDIA Ampere architecture provides L2 cache residency 
controls for you to manage data to keep or evict from the cache. A100 also adds Compute Data 
Compression to deliver up to an additional 4x improvement in DRAM bandwidth and L2 
bandwidth, and up to 2x improvement in L2 capacity. 

Multi-Instance GPU (MIG)  

The new Multi-Instance GPU (MIG) feature allows the A100 Tensor Core GPU to be securely 
partitioned into as many as seven separate GPU Instances for CUDA applications, providing 
multiple users with separate GPU resources to accelerate their applications and development 
projects.  
 
With MIG, each instance’s processors have separate and isolated paths through the entire 
memory system - the on-chip crossbar ports, L2 cache banks, memory controllers, and DRAM 
address busses are all assigned uniquely to an individual instance. This ensures that an 
individual user’s workload can run with predictable throughput and latency, with the same L2 
cache allocation and DRAM bandwidth, even if other tasks are thrashing their own caches or 
saturating their DRAM interfaces. 
 
MIG increases GPU hardware utilization while providing a defined QoS and isolation between 
different clients (such as VMs, containers, and processes). MIG is especially beneficial for 
Cloud Service Providers who have multi-tenant use cases, and it ensures one client cannot 
impact the work or scheduling of other clients, in addition to providing enhanced security and 
allowing GPU utilization guarantees for customers.  

Third-Generation NVLink 

The third-generation of NVIDIA’s high-speed NVLink interconnect implemented in A100 GPUs 
and the new NVSwitch significantly enhances multi-GPU scalability, performance, and reliability. 
With more links per GPU and switch, the new NVLink provides much higher GPU-GPU 
communication bandwidth, and improved error-detection and recovery features.  

Third-generation NVLink has a data rate of 50 Gbit/sec per signal pair, nearly doubling the 
25.78 Gbits/sec rate in V100. A single A100 NVLink provides 25 GB/second bandwidth in each 
direction similar to V100, but using only half the number of signal pairs per link compared to 
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V100. The total number of links is increased to twelve in A100, versus 6 in V100, yielding 600 
GB/sec total bandwidth versus 300 GB/sec for V100.  

Support for NVIDIA Magnum IO™ and Mellanox Interconnect Solutions 

The NVIDIA A100 Tensor Core GPU is fully compatible with NVIDIA Magnum IO and Mellanox 
state-of-the-art InfiniBand and Ethernet interconnect solutions to accelerate multi-node 
connectivity. The NVIDIA Magnum IO APIs integrate computing, networking, file systems, and 
storage to maximize IO performance for multi-GPU, multi-node accelerated systems. It 
interfaces with CUDA-X™ libraries to accelerate IO across a broad range of workloads, from AI 
to data analytics to visualization. 

PCIe Gen 4 with SR-IOV 

The A100 GPU supports PCI Express Gen 4 (PCIe Gen 4) which doubles the bandwidth of 
PCIe 3.0/3.1 by providing 31.5 GB/sec versus 15.75 GB/sec for x16 connections. The faster 
speed is especially beneficial for A100 GPUs connecting to PCIe 4.0-capable CPUs, and to 
support fast network interfaces, such as 200 Gbit/sec InfiniBand. A100 also supports Single 
Root Input/Output Virtualization (SR-IOV), which allows sharing and virtualizing a single PCIe 
connection for multiple processes or Virtual Machines (VMs). 

Improved Error and Fault Detection, Isolation, and Containment 

It is critically important to maximize GPU uptime and availability by detecting, containing, and 
often correcting errors and faults, rather than forcing GPU resets, especially in large multi-GPU 
clusters and single-GPU, multi-tenant environments such as MIG configurations. The NVIDIA 
A100 Tensor Core GPU includes new technology to improve error/fault attribution, isolation, and 
containment as described in the in-depth architecture sections below. 

Asynchronous Copy  

The A100 GPU includes a new asynchronous copy instruction that loads data directly from 
global memory into SM shared memory, eliminating the need for intermediate register file (RF) 
usage. Async-copy reduces register file bandwidth, uses memory bandwidth more efficiently, 
and reduces power consumption. As the name implies, asynchronous copy can be done in the 
background while the SM is performing other computations. 

Asynchronous Barrier 

The A100 GPU provides hardware-accelerated barriers in shared memory. These barriers are 
available using CUDA 11 in the form of ISO C++-conforming barrier objects. Asynchronous 
barriers split apart the barrier arrive and wait operations, and can be used to overlap 
asynchronous copies from global memory into shared memory with computations in the SM. 
They can be used to implement producer-consumer models using CUDA threads. Barriers also 
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provide mechanisms to synchronize CUDA threads at different granularities, not just warp or 
block level. 

Task Graph Acceleration 

CUDA Task Graphs provide a more efficient model for submitting work to the GPU. A task 
graph consists of a series of operations, such as memory copies and kernel launches, 
connected by dependencies. Task graphs enable a define-once/run-repeatedly execution flow. 
A predefined task graph allows the launch of any number of kernels in a single operation, 
greatly improving application efficiency and performance. A100 adds new hardware features to 
make the paths between grids in a task graph significantly faster.  
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NVIDIA A100 Tensor Core GPU Architecture In-
Depth 
The NVIDIA A100 GPU based on NVIDIA Ampere architecture is engineered to provide as 
much AI and HPC computing power as possible from its many new architectural features and 
optimizations. A100 is built on the TSMC 7nm N7 FinFET fabrication process that provides 
higher transistor density, improved performance, and better power efficiency than the 12nm 
FFN process used in Tesla V100. A new Multi-Instance GPU (MIG) capability provides 
enhanced client/application fault isolation and QoS for multi-tenant and virtualized GPU 
environments which is especially beneficial to Cloud Service Providers. A faster and more error-
resilient third-generation of NVIDIA’s NVLink interconnect delivers improved multi-GPU 
performance scaling for hyperscale data centers.  

The NVIDIA GA100 GPU is composed of multiple GPU Processing Clusters (GPCs), Texture 
Processing Clusters (TPCs), Streaming Multiprocessors (SMs), and HBM2 memory controllers. 

The full implementation of the GA100 GPU includes the following units: 

● 8 GPCs, 8 TPCs/GPC, 2 SMs/TPC, 16 SMs/GPC, 128 SMs per full GPU 
● 64 FP32 CUDA Cores/SM, 8192 FP32 CUDA Cores per full GPU 
● 4 Third-generation Tensor Cores/SM, 512 Third-generation Tensor Cores per full GPU  
● 6 HBM2 stacks, 12 512-bit Memory Controllers  

The NVIDIA A100 Tensor Core GPU implementation of the GA100 GPU includes the 
following units: 

● 7 GPCs, 7 or 8 TPCs/GPC, 2 SMs/TPC, up to 16 SMs/GPC, 108 SMs 
● 64 FP32 CUDA Cores/SM, 6912 FP32 CUDA Cores per GPU 
● 4 Third-generation Tensor Cores/SM, 432 Third-generation Tensor Cores per GPU  
● 5 HBM2 stacks, 10 512-bit Memory Controllers 

The TSMC 7nm N7 process used to build the GA100 GPU allows many more GPCs, TPCs, and 
SM units, along with many other new hardware features in a die size similar to the Volta GV100 
GPU (which was fabricated on TSMC’s 12nm FFN process). 

Figure 6 shows a full GA100 GPU with 128 SMs. The A100 is based on GA100 and has 108 
SMs.  
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Figure 6. GA100 Full GPU with 128 SMs (A100 Tensor Core GPU has 108 
SMs) 

 

A100 SM Architecture 
The new A100 SM significantly increases performance, builds upon features introduced in both 
the Volta and Turing SM architectures, and adds many new capabilities and enhancements.  

The A100 SM diagram is shown in Figure 7. Volta and Turing have eight Tensor Cores per SM, 
with each Tensor Core performing 64 FP16/FP32 mixed-precision fused multiply-add (FMA) 
operations per clock. The A100 SM includes new third-generation Tensor Cores that each 
perform 256 FP16/FP32 FMA operations per clock. A100 has four Tensor Cores per SM, which 
together deliver 1024 dense FP16/FP32 FMA operations per clock, a 2x increase in 
computation horsepower per SM compared to Volta and Turing.  

Key SM features are briefly highlighted below (and described in detail in subsequent sections): 

● Third-generation Tensor Cores: 
○ Acceleration for all data types including FP16, BF16, TF32, FP64, INT8, INT4, 

and Binary. 
○ New Tensor Core sparsity feature exploits fine-grained structured sparsity in 

deep learning networks, doubling the performance of standard Tensor Core 
operations. 
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○ TF32 Tensor Core operations in A100 provide an easy path to accelerate FP32 
input/output data in DL frameworks and HPC, running 10x faster than V100 FP32 
FMA operations, or 20x faster with sparsity. 

○ FP16/FP32 mixed-precision Tensor Core operations deliver unprecedented 
processing power for DL, running 2.5x faster than Tesla V100 Tensor Core 
operations, increasing to 5x with sparsity. 

○ BF16/FP32 mixed-precision Tensor Core operations run at the same rate as 
FP16/FP32 mixed-precision. 

○ FP64 Tensor Core operations deliver unprecedented double precision 
processing power for HPC, running 2.5x faster than V100 FP64 DFMA 
operations. 

○ INT8 Tensor Core operations with sparsity deliver unprecedented processing 
power for DL Inference, running up to 20x faster than V100 INT8 operations. 

● 192 KB of combined shared memory and L1 data cache, 1.5x larger than V100 SM 
● New asynchronous copy instruction loads data directly from global memory into shared 

memory, optionally bypassing L1 cache, and eliminating the need for intermediate 
register file (RF) usage 

● New shared-memory-based barrier unit (asynchronous barriers) for use with the new 
asynchronous copy instruction 

● New instructions for L2 cache management and residency controls 
● New warp-level reduction instructions supported by CUDA Cooperative Groups 
● Many programmability improvements which reduce software complexity  
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Figure 7. GA100 Streaming Multiprocessor (SM)  
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Third-Generation NVIDIA Tensor Core  

Tensor Cores are specialized high-performance compute cores for matrix math operations that 
provide groundbreaking performance for AI and HPC applications. Tensor Cores perform matrix 
multiply and accumulate (MMA) calculations. Hundreds of Tensor Cores operating in parallel in 
one NVIDIA GPU enable massive increases in throughput and efficiency. Tensor Cores were 
first introduced in the NVIDIA Tesla V100 GPU, and further enhanced in NVIDIA’s more recent 
Turing GPUs. (Refer to the NVIDIA Tesla V100 GPU Architecture for background information on 
Tensor Core operation.)  

Table 2. A100 speedup over V100 (TC=Tensor Core, GPUs at respective 
clock speeds) 

 V100 A100 A100  
Sparsity1  

A100 
Speedup 

A100 Speedup 
with Sparsity 

A100 FP16 vs  
V100 FP16  

31.4 TFLOPS 78 TFLOPS NA 2.5x NA 

A100 FP16 TC vs  
V100 FP16 TC 

125 TFLOPS 312 TFLOPS 624 TFLOPS 2.5x 5x 

A100 BF16 TC vs 
V100 FP16 TC 

125 TFLOPS 312 TFLOPS 624 TFLOPS 2.5x 5x 

A100 FP32 vs  
V100 FP32 

15.7 TFLOPS 19.5 TFLOPS NA 1.25x NA 

A100 TF32 TC vs  
V100 FP32  

15.7 TFLOPS 156 TFLOPS 312 TFLOPS 10x 20x 

A100 FP64 vs  
V100 FP64 

7.8 TFLOPS 9.7 TFLOPS NA 1.25x NA 

A100 FP64 TC vs  
V100 FP64 

7.8 TFLOPS 19.5 TFLOPS NA 2.5x NA 

A100 INT8 TC vs  
V100 INT8 

62 TOPS 624 TOPS 1248 TOPS 10x 20x 

A100 INT4 TC NA 1248 TOPS 2496 TOPS NA NA 

A100 Binary TC NA 4992 TOPS NA NA NA 

1 - Effective TOPS / TFLOPS using the new Sparsity Feature 

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
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A100 Tensor Cores Boost Throughput 

The new third-generation Tensor Core architecture in A100 delivers double the raw dense 
Tensor throughput per SM compared to V100, accelerates more data types, and delivers 
tremendous additional 2x speedups for sparse matrix computations. 

General Matrix-Matrix Multiplication (GEMM) operations are at the core of neural network 
training and inference, and are used to multiply large matrices of input data and weights in 
various layers. The GEMM operation computes the matrix product D = A * B + C, where C and 
D are m-by-n matrices, A is an m-by-k matrix, and B is a k-by-n matrix. The problem size of 
such GEMM operations running on Tensor Cores is defined by the matrix sizes, and typically 
denoted as m-by-n-by-k.  

Using FP16/FP32 mixed-precision Tensor Core operations as an example, at the hardware 
level, each Tensor Core in the Volta architecture can execute 64 FP16 fused multiply-add 
operations (FMAs) with FP32 accumulation per clock, allowing it to compute a mixed-precision 
4x4x4 matrix multiplication per clock. Since each Volta SM includes eight Tensor Cores, a 
single SM delivers 512 FP16 FMA operations per clock or 1024 individual FP16 f loating point 
operations per clock. Each of the A100 Tensor Cores can execute 256 FP16 FMA operations 
per clock, allowing it to compute the results for an 8x4x8 mixed-precision matrix multiplication 
per clock. Each SM in the A100 GPU includes four of the new redesigned Tensor Cores and 
therefore each SM in A100 delivers 1024 FP16 FMA operations per clock (or 2048 individual 
FP16 floating point operations per clock). 

Comparing total GPU performance, not just SM-level performance, the NVIDIA A100 Tensor 
Core GPU with its 108 SMs includes a total of 432 Tensor Cores that deliver up to 312 TFLOPS 
of dense mixed-precision FP16/FP32 performance. That equates to 2.5x the mixed-precision 
Tensor Core performance of the entire Tesla V100 GPU, and 20x V100’s standard FP32 (FMA 
operations running on traditional FP32 CUDA cores) throughput. 
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Figure 8 compares V100 and A100 FP16 Tensor Core operations, and also compares V100 
FP32, FP64, and INT8 standard operations to respective A100 TF32, FP64, and INT8 Tensor 
Core operations. Throughputs are aggregate per GPU, with A100 using sparse Tensor Core 
operations for FP16, TF32, and INT8. Note the upper left diagram shows two V100 FP16 
Tensor Cores, since a V100 SM has two Tensor Cores per SM partition, while an A100 SM one. 

 

A100 Tensor Core operations compared to V100 Tensor Core and standard operations for different data 
types. 

Figure 8. A100 vs V100 Tensor Core Operations       

  



NVIDIA A100 Tensor Core GPU Architecture In-Depth 

26 
NVIDIA A100 Tensor Core GPU Architecture 
 

A100 Tensor Cores Support All DL Data Types 

In addition to FP16 precision introduced on the Volta Tensor Core, and the INT8, INT4 and 
binary 1-bit precisions added in the Turing Tensor Core, the A100 Tensor Core adds support for 
TF32, BF16 and FP64 formats. (FP64 double-precision MMA is discussed in the next section). 

Volta GPU architecture introduced Tensor Cores that operate on IEEE FP16 data types, 
providing 8x more math throughput compared to V100 FP32. Results are accumulated into 
FP32 for mixed precision training or FP16 for inference. From a raw architectural performance 
perspective, if both A100 and V100 were operating at the same clock speed, a single A100 SM 
delivers 2x FP16 Tensor Core performance compared to the V100 SM, and 16x compared to 
standard V100 (and A100) FP32 FFMA operations. 

Turing architecture extended Tensor Cores to handle more inference use cases by adding INT8, 
INT4, and Binary support. On Turing these provided 16x, 32x, and 128x more math throughput 
when compared to FP32. The A100 SM delivers 2x INT8, INT4, and Binary Tensor Core 
performance compared to the Turing SM, respectively, and 32x, 64x, and 256x compared to 
A100 FP32 FFMA. 

NVIDIA Ampere architecture adds three additional formats to Tensor Cores – BF16, TF32 and 
FP64. BF16 is an alternative to IEEE FP16, and includes an 8-bit exponent, 7-bit mantissa, and 
1 sign-bit. Both FP16 and BF16 have been shown to successfully train neural networks in 
mixed-precision mode, matching FP32 training results without hyper-parameter adjustment. 
Both FP16 and BF16 modes of Tensor Cores provide 16x more math throughput than FP32 in 
A100 GPUs. 

Today, the default math for AI training is FP32, without tensor core acceleration.  The NVIDIA 
Ampere architecture introduces new support for TF32, enabling AI training to use tensor cores 
by default with no effort on the user’s part.  Non-tensor operations continue to use the FP32 
datapath, while TF32 tensor cores read FP32 data and use the same range as FP32 with 
reduced internal precision, before producing a standard IEEE FP32 output. TF32 includes an 8-
bit exponent (same as FP32), 10-bit mantissa (same precision as FP16) and 1 sign-bit. 

As with Volta, Automatic Mixed Precision (AMP) enables users to use mixed precision with 
FP16 for AI training with just a few lines of code changes. Using AMP, A100 delivers a further 
2X faster Tensor Core performance over TF32. 
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TensorFloat-32 (TF32) provides the range of FP32 with the precision of FP16, 8x precision vs. BF16 
(lef t). A100 accelerates tensor math with TF32 while supporting FP32 input and output data (right), 
enabling easy integration into DL and HPC programs and automatic acceleration of DL frameworks. 

Figure 9. TensorFloat-32 (TF32)   

Table 3. A100 Tensor Core Input / Output Formats and Performance vs FP32 
FFMA.  

 

Note: TOPS column indicates TFLOPS for floating-point ops and TOPS for integer ops. X-
factors compare MMA ops with and without sparsity to standard FP32 FFMA ops. (Sparse 
TOPS represents effective TOPS / TFLOPS using the new Sparsity feature.) 
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To summarize the user choices for NVIDIA Ampere architecture math for Deep Learning 
training: 

● By default, TF32 tensor cores are used, with no adjustment to user scripts. Up to 8x 
more throughput compared to FP32 on A100 and up to 10x compared to FP32 on V100. 

● FP16 or BF16 mixed-precision training should be used for maximum training speed. Up 
to 2x more throughput compared to TF32, and up to 16x compared to FP32 on A100 
and up to 20x compared to FP32 on V100. 

A100 Tensor Cores Accelerate HPC  

The performance needs of High-Performance Computing (HPC) applications are growing 
rapidly. Many applications from a wide range of scientif ic and research disciplines rely on 
double precision (FP64) computations. To meet the rapidly growing compute needs of HPC 
computing, A100 Tensor Cores support acceleration of IEEE-compliant FP64 computations, 
delivering up to 2.5x the FP64 performance of the NVIDIA Tesla V100 GPU. The new Double 
Precision Matrix Multiply Add instruction on A100 replaces 8 DFMA instructions on V100, 
reducing instruction fetches, scheduling overhead, register reads, datapath power, and shared 
memory read bandwidth. Using Tensor Cores, each SM in A100 computes a total of 64 FP64 
FMA operations/clock (or 128 FP64 operations/clock), which is twice the throughput of Tesla 
V100. The A100 Tensor Core GPU with 108 SMs delivers a peak FP64 throughput of 19.5 
TFLOPS, which is 2.5x that of Tesla V100. 

With support for these new formats, the A100 Tensor Cores can be used to accelerate HPC 
workloads, iterative solvers, and various new AI algorithms.  

Mixed Precision Tensor Cores for HPC 

One of the most promising applications for mixed-precision Tensor Cores in HPC is the field of 
iterative refinement methods. Iterative refinement methods are commonly used for solving linear 
systems of equations, which occur ubiquitously in HPC applications in a wide range of f ields 
such as earth science, fluid dynamics, healthcare, material science, and nuclear energy, as well 
as oil and gas exploration. 
  
The Tensor Core Accelerated Iterative Refinement Solver (TCAIRS) in cuSOLVER automates 
usage of mixed precision for this application. Last year, a fusion reaction study for the 
International Thermonuclear Experimental Reactor demonstrated that mixed-precision 
techniques delivered a speedup of 3.5x on V100 for such solvers using V100’s FP16 Tensor 
Cores. The same technology used in that study tripled the Summit supercomputer’s 
performance on the HPL-AI benchmark. 
  
cuSOLVER in CUDA 11.0 adds support for A100’s new tensor core formats including TF32. 
Figure 10 and Figure 11 below show results of the TCAIRS solver on 37 tests from the 
SuiteSparse Matrix collection, comparing convergence rate and performance for FP32, FP16 
with input scaling, BF16, and TF32. These were compared to the performance of the reference 
FP64 solver which leverages the FP64 Tensor Cores on the A100. In cases where the mixed-
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precision solver automatically falls back to the FP64 solver due to slow or no convergence, the 
number of iterations were recorded as negative, and speedup is less than one, as it included the 
cost of the failed attempt. 
  
As shown in Figure 10 and Figure 11, TF32 delivered the fastest and most robust results 
compared to other Tensor Core modes. The number of iterations to converge was the lowest for 
TF32 amongst the Tensor Core modes. While FP32 had one fallback case, TF32 had only two, 
compared to three for FP16 with input scaling, and six for BF16 Tensor Core modes. The 
geomean speedup over the FP64 solver was 2.0X for TF32 Tensor Cores compared to 1.9X for 
FP16 and 1.8X for BF16. For large matrices with a size of around 40K with complex numbers, 
the TCAIRS solver delivers speedups of up to 4X with TF32 on A100. 
  
The applications of mixed-precision Tensor Core acceleration are not limited to dense linear 
solvers, and can be extended to sparse problems, in addition to other numerical methods where 
matrix multiplies represent a significant portion of the algorithmic complexity. 
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Number of iterations taken by the TCAIRS solver compared for 37 different problems to converge to FP64 
accuracy for different precisions. The results are sorted by increasing number of iterations for TF32. 
Negative figures indicate the solver did not converge with reduced precision and fell back to a full FP64 
solution. 

Figure 10. Iterations of TCAIRS Solver to Converge to FP64 Accuracy 

 
 
Speedup of the TCAIRS solver over the baseline FP64 direct solver compared for 37 different problems. 
Cases where speedups are less than one indicate that the TCAIRS solver did not converge with reduced 
precision and fell back to a full FP64 solution. The results are sorted by increasing speedup for TF32. 
 
Figure 11. TCAIRS solver speedup over the baseline FP64 direct solver 
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A100 Introduces Fine-Grained Structured Sparsity  

With the A100 GPU, NVIDIA introduces Fine-Grained Structured Sparsity, a novel approach 
which doubles compute throughput for deep neural networks.  
 
Sparsity is possible in deep learning because the importance of individual weights evolves 
during the learning process, and by the end of network training, only a subset of weights have 
acquired a meaningful purpose in determining the learned output. The remaining weights are no 
longer needed. 
 
Fine grained structured sparsity imposes a constraint on the allowed sparsity pattern, making it 
more efficient for hardware to do the necessary alignment of input operands. NVIDIA engineers 
have found that because deep learning networks are able to adapt weights during the training 
process based on training feedback, in general the structure constraint does not impact the 
accuracy of the trained network for inferencing. This enables inferencing acceleration with 
sparsity. For training acceleration, sparsity needs to be introduced early in the process to offer a 
performance benefit, and methodologies for training acceleration without accuracy loss are an 
active research area.  
 
Refer to Appendix B - Sparse Neural Network Primer for additional background information 
on sparsity. 

Sparse Matrix Definition 
 
Structure is enforced through a new 2:4 sparse matrix definition that allows two non-zero values 
in every four-entry vector.  

A100 supports 2:4 structured sparsity on rows, as shown in Figure 12 below. Due to the well-
defined structure of the matrix, it can be compressed efficiently and reduce memory storage and 
bandwidth by almost 2x.  
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A100 Fine-Grained Structured Sparsity prunes trained weights with a 2-out-of-4 non-zero pattern, 
followed by a simple and universal recipe for fine-tuning the non-zero weights. The weights are 
compressed for a 2x reduction in data footprint and bandwidth, and the A100 Sparse Tensor Core 
doubles math throughput by skipping the zeros. 

Figure 12. A100 Fine-Grained Structured Sparsity 

 
NVIDIA has developed a simple and universal recipe for sparsifying deep neural networks for 
inference using this 2:4 structured sparsity pattern. The network is first trained using dense 
weights, then fine-grained structured pruning is applied, and finally the remaining non-zero 
weights are fine-tuned with additional training steps. This method results in virtually no loss in 
inferencing accuracy based on evaluation across dozens of networks spanning vision, object 
detection, segmentation, natural language modeling, and translation.   

Sparse Matrix Multiply-Accumulate (MMA) Operations 
A100’s new Sparse MMA instructions skip the compute on entries that have zero values, 
resulting in a doubling of the Tensor Core compute throughput. For example, in Figure 13 
Below, Matrix A is a Sparse matrix with 50% sparsity following the required 2:4 structured 
pattern and Matrix B is a dense matrix of half the size. A standard MMA operation would not 
skip the zero values and would compute the result for the entire 16x8x16 matrix multiply in N 
cycles. Using a Sparse MMA instruction, only the elements in each row of Matrix A that have a 
non-zero value are matched with the corresponding elements from Matrix B. This transforms the 
computation into a smaller matrix multiply that takes just N/2 cycles, a 2x speedup.  
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Example Dense MMA and Sparse MMA operations using 16x16 sparse matrix (Matrix A), multiplied by a 
dense 16x8 matrix (Matrix B). Sparse MMA operation on right doubles throughput by skipping compute of 
zero values 

Figure 13. Example Dense MMA and Sparse MMA operations  

 

Combined L1 Data Cache and Shared Memory 

First introduced in Volta V100, the NVIDIA combined L1 data cache and shared memory 
subsystem architecture significantly improves performance, while also simplifying programming 
and reducing the tuning required to attain at or near-peak application performance. Combining 
data cache and shared memory functionality into a single memory block provides the best 
overall performance for both types of memory accesses. The combined capacity of the L1 data 
cache and shared memory is 192 KB/SM in A100 versus 128 KB/SM in V100.  

L1 cache integration within the shared memory block ensures the L1 cache has low latency and 
high bandwidth. The L1 functions as a high-throughput conduit for streaming data while 
simultaneously providing high-bandwidth and low-latency access to frequently reused data—the 
best of both worlds. The A100’s larger L1/shared memory subsystem further amplif ies 
performance of applications that use the L1 data cache when accessing device memory, 
allowing performance levels approaching that of using and explicitly managing fast shared 
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memory.  (See the NVIDIA Tesla V100 Whitepaper for examples on how a combined L1 data 
cache and shared memory subsystem allows L1 cache operations to attain the benefits of 
shared memory performance.)  

Simultaneous Execution of FP32 and INT32 Operations 

Similar to Tesla V100 and Turing GPUs, the A100 SM also includes separate FP32 and INT32 
cores, allowing simultaneous execution of FP32 and INT32 operations at full throughput, while 
also increasing instruction issue throughput. Many applications have inner loops that perform 
pointer arithmetic (integer memory address calculations) combined with floating-point 
computations that will benefit from simultaneous execution of FP32 and INT32 instructions. 
Each iteration of a pipelined loop can update addresses (INT32 pointer arithmetic) and load 
data for the next iteration while simultaneously processing the current iteration in FP32. 

A100 HBM2 and L2 Cache Memory Architectures 
The design of a GPU’s memory architecture and hierarchy is critical to application performance, 
and impacts GPU size, cost, power usage, and programmability. Many different memory 
subsystems exist in a GPU, from the large complement of off-chip DRAM (frame buffer) device 
memory, to varying levels and types of on-chip memories, to the register files used in 
computations in the SM. High-performance HBM2 is the DRAM technology used in the A100 
GPU.  
 
The global and local memory areas accessed by CUDA programs reside in HBM2 memory 
space, and is referred to as device memory in CUDA parlance. Constant memory space resides 
in device memory and is cached in the constant cache. Texture and surface memory spaces 
reside in device memory and are cached in texture cache. The L2 cache caches reads from and 
writes to HBM2 (device) memory. HBM2 and L2 memory spaces are accessible to all SMs and 
all applications running on the GPU. 

A100 HBM2 DRAM Subsystem  

As HPC, AI, and analytics datasets continue to grow and problems looking for solutions get 
increasingly complex, more GPU memory capacity and higher memory bandwidth is a 
necessity. Tesla P100 was the world’s first GPU architecture to support the high-bandwidth 
HBM2 memory technology, while Tesla V100 provided a faster, more efficient, and higher 
capacity HBM2 implementation. A100 raises the bar yet again on HBM2 performance and 
capacity.  

HBM2 memory is composed of memory stacks located on the same physical package as the 
GPU, providing substantial power and area savings compared to traditional GDDR5/6 memory 
designs, allowing more GPUs to be installed in systems. Fundamental details of HBM2 
technology are included in our Pascal Architecture Whitepaper. 

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
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The A100 GPU includes 40 GB of fast HBM2 DRAM memory on its SXM4-style circuit board. 
The memory is organized as five active HBM2 stacks with eight memory dies per stack. With a 
1215 MHz (DDR) data rate the A100 HBM2 delivers 1555 GB/sec memory bandwidth, which 
is more than 1.7x higher than Tesla V100 memory bandwidth.  

ECC Memory Resiliency 
The A100 HBM2 memory subsystem supports Single-Error Correcting Double-Error Detecting 
(SECDED) Error Correction Code (ECC) to protect data. ECC provides higher reliability for 
compute applications that are sensitive to data corruption. It is especially important in large-
scale cluster computing environments where GPUs process very large datasets and/or run 
applications for extended periods. Other key memory structures in A100 are also protected by 
SECDED ECC including the L2 cache and the L1 caches and register files inside all the SMs. 

A100 L2 Cache 

The A100 GPU in the A100 Tensor Core GPU includes 40 MB of L2 cache, which is 6.7x larger 
than Tesla V100 L2 cache. The substantial increase in L2 cache size significantly improves 
performance of many HPC and AI workloads because larger portions of datasets and models 
can now be cached and repeatedly accessed at much higher speed than reading from and 
writing to HBM2 memory. Some workloads that are limited by DRAM bandwidth will benefit from 
the larger L2 cache, such as deep neural networks using small batch sizes.  
 
The A100 L2 cache is a shared resource for the GPCs and SMs and lies outside of the GPCs. 
The L2 cache is divided into two partitions to enable higher bandwidth and lower latency 
memory access. Each L2 partition localizes and caches data for memory accesses from SMs in 
the GPCs directly connected to the partition. This structure enables A100 to deliver a 2.3x L2 
bandwidth increase over V100. Hardware cache-coherence maintains the CUDA programming 
model across the full GPU, and applications will automatically leverage the bandwidth and 
latency benefits of A100’s new L2 cache. 
 
Each L2 cache partition is divided into 40 L2 cache slices. Eight 512 KB L2 slices are 
associated with each memory controller. As mentioned in the MIG section below, an L2 slice 
group composed of 10 L2 cache slices is included in each GPU slice in a GPU Instance of a 
MIG configuration. The A100 L2 read bandwidth is 5120 Bytes/clk, compared to V100 L2 cache 
read bandwidth of 2048 Bytes/clk. 
 
The NVIDIA Ampere architecture provides L2 cache residency controls for the programmer to 
manage data to keep or evict from the cache (see the CUDA Advances for NVIDIA Ampere 
Architecture GPUs section below for more details).  
 
The NVIDIA Ampere architecture adds Compute Data Compression to accelerate unstructured 
sparsity and other compressible data patterns. Compression in L2 provides up to 4x 
improvement to DRAM read/write bandwidth, up to 4x improvement in L2 read bandwidth, and 
up to 2x improvement in L2 capacity. 
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Table 4. Comparison of NVIDIA Data Center GPUs 

GPU Features NVIDIA Tesla P100 NVIDIA Tesla V100 NVIDIA A100 
GPU Codename GP100 GV100 GA100 

GPU Architecture NVIDIA Pascal NVIDIA Volta NVIDIA Ampere 

GPU Board Form Factor  SXM SXM2 SXM4 

SMs 56 80 108 

TPCs 28 40 54 

FP32 Cores / SM 64 64 64 

FP32 Cores / GPU 3584 5120 6912 

FP64 Cores / SM  (excl. Tensor) 32 32 32 

FP64 Cores / GPU  (excl. Tensor) 1792 2560 3456 

INT32 Cores / SM NA 64 64 

INT32 Cores / GPU NA 5120 6912 

Tensor Cores / SM NA 8 42 

Tensor Cores / GPU NA 640 432 

GPU Boost Clock 1480 MHz 1530 MHz 1410 MHz 

Peak FP16 Tensor TFLOPS with 
FP16 Accumulate1 

NA 125 312/6243 

Peak FP16 Tensor TFLOPS with 
FP32 Accumulate1 

NA 125 312/6243 

Peak BF16 Tensor TFLOPS with 
FP32 Accumulate1 

NA NA 312/6243 

Peak TF32 Tensor TFLOPS1 NA NA 156/3123 

Peak FP64 Tensor TFLOPS1 NA NA 19.5 

Peak INT8 Tensor TOPS1 NA NA 624/12483 

Peak INT4 Tensor TOPS1 NA NA 1248/24963 

Peak FP16 TFLOPS1  (non-Tensor) 21.2 31.4 78 

Peak BF16 TFLOPS1  (non-Tensor) NA NA 39 

Peak FP32 TFLOPS1  (non-Tensor) 10.6 15.7 19.5 

Peak FP64 TFLOPS1  (non-Tensor) 5.3 7.8 9.7 

Peak INT32 TOPS1,4 NA 15.7 19.5 

Texture Units 224 320 432 

Memory Interface 4096-bit HBM2 4096-bit HBM2 5120-bit HBM2 

Memory Size 16 GB 32 GB / 16 GB 40 GB 

Memory Data Rate 703 MHz DDR 877.5 MHz DDR 1215 MHz DDR 
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Memory Bandwidth 720 GB/sec 900 GB/sec 1555 GB/sec 

L2 Cache Size 4096 KB 6144 KB 40960 KB 

Shared Memory Size / SM 64 KB Configurable up to 
96 KB 

Configurable up to 
164 KB 

Register File Size / SM 256 KB 256 KB 256 KB 

Register File Size / GPU 14336 KB 20480 KB 27648 KB 

TDP 300 Watts 300 Watts 400 Watts 

Transistors 15.3 billion 21.1 billion 54.2 billion 

GPU Die Size 610 mm² 815 mm² 826 mm2 

TSMC Manufacturing Process 16 nm FinFET+ 12 nm FFN 7 nm N7 

1. Peak rates are based on GPU Boost Clock. 
2. Four Tensor Cores in an A100 SM have 2x the raw FMA computational 

power of eight Tensor Cores in a GV100 SM. 
3. Effective TOPS / TFLOPS using the new Sparsity Feature 
4. TOPS = IMAD-based integer math 

 

Note: Because the A100 Tensor Core GPU is designed to be installed in high-performance 
servers and data center racks to power AI and HPC compute workloads, it does not include 
display connectors, NVIDIA RT Cores for ray tracing acceleration, or an NVENC encoder. 
 

Maximizing Tensor Core Performance and Efficiency for Deep 
Learning Applications 

As discussed above, the NVIDIA Tensor Core was first introduced in the NVIDIA Volta GPU 
architecture to deliver a significant performance speedup for matrix multiplication operations that 
are common in neural network training and inferencing. Tensor Cores on Volta supported an 8x 
peak speedup for mixed-precision matrix multiplication compared to standard FP32 precision 
operations.  
 
Compared to Tesla V100, the NVIDIA Ampere architecture-based A100 GPU has more SMs 
(108 vs 80) with third-generation Tensor Cores capable of larger Tensor operations. The Tensor 
Cores in the A100 GPU support peak mixed-precision compute performance that is 16x higher 
than standard FP32 FMA operations.  
 
Several new features and optimizations were introduced in the NVIDIA Ampere architecture that 
enhance utilization of the Tensor Cores, improve programmability, reduce software complexity, 
reduce memory bandwidth usage, and reduce latency and other overheads.  



NVIDIA A100 Tensor Core GPU Architecture In-Depth 

38 
NVIDIA A100 Tensor Core GPU Architecture 
 

Strong Scaling Deep Learning Performance 

Deep learning requires massive compute resources, but the parallelism is broken up into small 
sequentially dependent chunks of work. A typical deep neural network consists of long chains of 
interconnected layers. Each layer performs an operation similar to General Matrix Multiplication 
(GEMM) by taking a matrix of input values and multiplying it with a matrix of weights to create 
an output matrix. The output matrix then typically goes through some activation math before 
being sent to the next layer of the network. The output matrix of each GEMM is broken down 
into smaller tiles which map across the multiple SMs in the GPU.  
 
The NVIDIA Ampere architecture targets strong scaling to deliver speedups on existing deep 
neural networks. Weak scaling is an easier target where the workload parallelism must grow to 
leverage the faster architecture. With strong scaling the workload per GPU is fixed from one 
architecture to the next. In the context of deep learning, this means that the GEMM tile size per 
SM must not grow even while the A100 Tensor Cores consume data 2.5x faster than V100. The 
NVIDIA Ampere architecture implemented several features and optimizations, described below, 
to deliver data to the Tensor Cores at a faster rate and more efficiently. 

New NVIDIA Ampere Architecture Features Improved Tensor Core 
Performance 

Data sharing improvements - The NVIDIA Ampere architecture third-generation Tensor Core 
allows data to be shared across all 32 threads in a warp, compared to 8 threads on Volta’s 
Tensor Core. Sharing data across more threads reduces the register file bandwidth for feeding 
data to the Tensor Cores. It also reduces the amount of redundant data loaded into the register 
files from shared memory (SMEM), which saves both bandwidth and register file storage. To 
further improve efficiency, A100 Tensor Core instructions increase the k dimension of the matrix 
multiply per instruction by up to 4x relative to V100. Overall, when computing matrix multiply 
operations A100 issues 8x fewer instructions and performs 2.9x fewer register file accesses 
than V100. 
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A100’s Tensor Core increases thread sharing by 4x over V100. For a 16x16x16 matrix multiply, A100’s 
enhanced 16x8x16 Tensor Core (TC) instructions improve on V100 by reducing register accesses from 
80 to 28, and hardware instructions issued from 16 to 2. Cycle counts are per SM partition. Note: Each 
V100 8x8x4 TC instruction (CUDA warp-level instruction) is translated into four lower-level MMA 
hardware instructions. 

Figure 14. A100 Tensor Core Throughput and Efficiency 

 
Data Fetch Improvements - NVIDIA Ampere architecture includes a new asynchronous copy 
instruction that loads data directly from global memory (typically from L2 cache and DRAM) into 
SM shared memory. On Volta, data was first loaded through L1 cache into the register file with 
load-global instructions, then transferred from the register file to shared memory with store-
shared instructions, and finally loaded from shared memory into registers of multiple threads 
and warps with load-shared instructions. The new load-global-store-shared asynchronous copy 
instruction in NVIDIA Ampere architecture GPUs saves SM internal bandwidth by avoiding a 
roundtrip through the register file, and also eliminates the need to allocate register file storage 
for the in-flight data transfers. More details on the asynchronous copy instruction are provided 
later in this paper. 
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A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy 
instruction that bypasses L1 cache and register file (RF).  Additionally, A100’s more efficient Tensor 
Cores reduce shared memory (SMEM) loads. 

Figure 15. A100 SM Data Movement Efficiency 

New asynchronous barriers work together with the asynchronous copy instruction to enable 
efficient data fetch pipelines, and A100 increases maximum SMEM allocation per SM 1.7x to 
164 KB (vs 96 KB on V100). With these improvements A100 SMs continuously data stream 
data to keep the L2 cache constantly utilized. 
 
L2 Cache and DRAM Bandwidth improvements - The NVIDIA A100 GPU’s increased 
number of SMs and more powerful Tensor Cores in turn increase the required data fetch rates 
from DRAM and L2 cache. To feed the Tensor Cores, A100 implements a 5-site HBM2 memory 
subsystem with bandwidth of 1555 GB/sec, over 1.7x faster than V100. A100 further provides 
2.3x the L2 cache read bandwidth of V100.  
 
Alongside the raw data bandwidth improvements, A100 improves data fetch efficiency and 
reduces DRAM bandwidth demand with a 40 MB L2 cache that is almost 7x larger than that of 
Tesla V100. To fully exploit the L2 capacity A100 includes improved cache management 
controls. Optimized for neural network training and inferencing as well as general compute 
workloads, the new controls ensure that data in the cache is used more efficiently by minimizing 
writebacks to memory and keeping reused data in L2 to reduce redundant DRAM traffic. 
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For example, for DL inferencing workloads, ping-pong buffers can be persistently cached in the 
L2 for faster data access, while also avoiding writebacks to DRAM. For producer-consumer 
chains, such as those found in DL training, L2 cache controls can optimize caching across the 
write-to-read data dependencies.  In LSTM networks, recurrent weights that are shared across 
multiple GEMM operations can be preferentially cached and reused in L2.  
 

 
A100 L2 cache residency controls help applications reduce DRAM bandwidth. This example shows 
dif ferent data buffers highlighted with colors to indicate data that has been marked for persistent caching 
in L2. 

Figure 16. A100 L2 cache residency controls 

 
Compression - To boost efficiency and enhance strong scaling, A100 adds Compute Data 
Compression. Compression saves up to 4x DRAM read/write bandwidth, up to 4x L2 read 
bandwidth, and up to 2x L2 capacity. 
 

 
A100 Compute Data Compression improves DRAM bandwidth, L2 bandwidth, and L2 capacity. 

Figure 17. A100 Compute Data Compression 
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Summary - Figure 18 below summarizes the improvements that A100 delivers across all levels 
of the compute and memory hierarchy. These innovations enable A100 to strong scale deep 
learning to unprecedented levels of performance. 
 

 
A100 strong-scaling innovations and improvements over V100 across the compute and memory 
hierarchy. 

Figure 18. A100 strong-scaling innovations 
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Compute Capability  
The A100 GPU supports the new Compute Capability 8.0. Table 5 compares the parameters of 
different Compute Capabilities for NVIDIA GPU architectures. 
 

Table 5. Compute Capability:  GP100 vs GV100 vs GA100 

GPU Features NVIDIA Tesla P100 NVIDIA Tesla V100 NVIDIA A100 
GPU Codename GP100 GV100 GA100 

GPU Architecture NVIDIA Pascal NVIDIA Volta NVIDIA Ampere 

Compute Capability 6.0 7.0 8.0 

Threads / Warp 32 32 32 

Max Warps / SM 64 64 64 

Max Threads / SM 2048 2048 2048 

Max Thread Blocks / SM 32 32 32 

Max 32-bit Registers / SM 65536 65536 65536 

Max Registers / Block 65536 65536 65536 

Max Registers / Thread 255 255 255 

Max Thread Block Size 1024 1024 1024 

FP32 Cores / SM 64 64 64 

Ratio of SM Registers to FP32 
Cores 

1024 1024 1024 

Shared Memory Size / SM 64 KB Configurable up to 
96 KB 

Configurable up to 
164 KB 
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MIG (Multi-Instance GPU) Architecture 
While many data center workloads continue to scale, both in size and complexity, some 
acceleration tasks aren’t as demanding, such as early-stage development or inference on 
simple models at low batch sizes. Data center managers aim to keep resource utilization high, 
so an ideal data center accelerator doesn’t just go big- it also efficiently accelerates many 
smaller workloads. 

Background  

In 2017, the NVIDIA Tesla V100 GPU introduced hardware accelerated Multi Process Server 
(MPS) support, which allowed multiple applications to simultaneously execute on separate GPU 
execution resources (SMs). 

Using Volta MPS for deep learning inference applications, versus traditional GPU work 
submission methods, delivered much higher throughput and lower latency, permitting many 
individual inference jobs to be submitted concurrently to the GPU with improved overall GPU 
utilization. (See the NVIDIA Tesla V100 GPU Architecture Whitepaper for more details on Volta 
MPS.) 

 

 
Figure 19. Software-based MPS in Pascal vs Hardware-Accelerated MPS in 
Volta 

However, because memory system resources were shared across all the applications, one 
application could interfere with the others if it had high demands for DRAM bandwidth or its 
requests oversubscribed the L2 cache. Volta MPS, which remains fully supported on Ampere, 

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
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was designed for sharing the GPU among applications from a single user, but not for multi-user 
or multi-tenant use cases.   

MIG Capability of NVIDIA Ampere GPU Architecture 

The new MIG feature can partition each A100 into as many as seven GPU Instances for optimal 
utilization, effectively expanding access to every user and application. 

The A100 GPU new MIG capability can divide a single GPU into multiple GPU partitions called 
GPU Instances. Each instance’s SMs have separate and isolated paths through the entire 
memory system — the on-chip crossbar ports, L2 cache banks, memory controllers and DRAM 
address busses are all assigned uniquely to an individual instance. This ensures that an 
individual user’s workload can run with predictable throughput and latency, with the same L2 
cache allocation and DRAM bandwidth even if other tasks are thrashing their own caches or 
saturating their DRAM interface. 

Using this capability, MIG can partition available GPU compute resources to provide a defined 
quality of service (QoS) with fault isolation for different clients (such as VMs, containers, 
processes, and so on). It enables multiple GPU Instances to run in parallel on a single, physical 
A100 GPU. MIG also keeps the CUDA programming model unchanged to minimize 
programming effort. 

CSPs can use MIG to raise utilization rates on their GPU servers, delivering up to 7x more GPU 
Instances at no additional cost. MIG supports the necessary QoS and isolation guarantees 
needed by CSPs to ensure that one client (VM, container, process) cannot impact the work or 
scheduling from another client.  

CSPs often partition their hardware based on customer usage patterns. Effective partitioning 
only works if hardware resources are providing consistent bandwidth, proper isolation, and good 
performance during runtime. 

With NVIDIA Ampere architecture-based GPU, users will be able to see and schedule jobs on 
their new virtual GPU Instances as if they were physical GPUs. MIG works with Linux operating 
systems and their hypervisors. Users can run containers with MIG using runtimes such as 
Docker Engine, with support for container orchestration using Kubernetes coming soon. 

Important Use Cases for MIG 

An important use case for MIG, called “Multi-Tenant” (leveraged using NVIDIA’s vGPU 
technology), can be used by CSPs to rent out separate GPU Instances to different customers. 
Applications running in each GPU Instance are isolated and protected from faults occurring in 
applications running simultaneously in other GPU Instances. Data protection, fault isolation, and 
QoS is mandatory in such use cases. 

Another MIG use case called “Single Tenant, Single User” can support a single user using a 
single workstation to run multiple GPU-based applications, where fault isolation between 
applications is critical. Additionally, a “Single-Tenant, Multi-User” scenario can be useful for a 
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company to support internal workgroups, or to provide services to multiple external users, such 
as AI Inference services, or various other types of GPU-accelerated services. 

MIG allows compute resources to be partitioned across different Virtual Machines (VMs), and 
allows multiple VMs to execute simultaneously while maintaining fault isolation. Consistent 
performance can be maintained even if a VM is migrated to another GPU. In addition, better 
utilization of GPUs can be obtained by packing multiple VMs on the same GPU. 

 
CSP Multi-user node today (pre-A100) shows how accelerated GPU instances are available for usage 
only at full physical GPU granularity for users in different organizations, even if the user applications don’t 
require a full GPU. 

Figure 20. CSP Multi-user node Today  
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This CSP MIG diagram shows how multiple independent users from the same or different organizations 
can be assigned their own dedicated, protected, and isolated GPU Instance within a single physical GPU. 
(See MIG conf iguration and GPU partitioning details below). 

Figure 21. Example CSP MIG Configuration  

 

MIG Architecture and GPU Instances in Detail 

Creating GPU Instances can be thought of as splitting one big GPU into multiple smaller GPUs, 
with each GPU Instance having dedicated compute and memory resources. Each GPU Instance 
behaves like a smaller, fully capable independent GPU that includes a predefined number of 
GPCs, SMs, L2 cache slices, memory controllers, and frame buffer memory.  

A GPU Instance is constructed from multiple “GPU slices”, where each GPU slice includes a 
“Sys Pipe” (defined below), one GPC, one L2 slice group (an L2 slice group includes 10 L2 
cache slices), and access to a portion of frame buffer memory. The A100 GPU supports a total 
of 7 GPU slices. Note: In MIG operating mode, the single GPC in each GPU slice has seven 
TPCs (14 SMs) enabled, which allows all GPU slices to have the same consistent compute 
performance. 
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The Sys Pipe, which is part of the new A100 GigaThread™ Engine, is a unit that communicates 
with the host CPU and schedules work to a GPC (and its SMs) in the GPU slice. The A100 
Tensor Core GPU includes seven total Sys Pipes to support MIG. One A100 Sys Pipe is similar 
to prior GPU architectures, supporting both Graphics and Compute work, and the six additional 
new Sys Pipes support Compute-only workloads. When operating in Graphics Mode, A100 
behaves similar to past GPUs by using the single graphics-capable Sys Pipe to control the 
whole GPU (all seven GPCs of the A100 GPU) running a single graphics context. When in 
Compute Mode, all seven Sys Pipes can run multiple Compute contexts simultaneously. Note 
that graphics pipeline operations are not supported when the A100 GPU is in MIG mode. MIG is 
a Compute Mode-only feature. 

A GPU Memory slice is another MIG structure that includes all the L2 slice groups (blocks of L2 
cache slices) and associated frame buffer memory contained across all the GPU slices in a 
GPU Instance. Application contexts running in one GPU Instance will not use the L2 slices of 
another GPU Instance, which effectively isolates and proportions memory bandwidth used 
across the different GPU Instances. 

 
(Note that unit sizes depicted do not correspond to actual physical area on the GPU die.) 

Figure 22. Example MIG compute configuration with three GPU Instances.  

A single GPU Instance provides memory QoS to all client applications running on the Instance. 
Multiple Instances proportionately share GPU frame buffer memory. 

Variable numbers of GPU slices can be statically assigned to each GPU Instance to support the 
desired partitioning of computational and memory bandwidth resources, in addition to improving 
QoS, fault isolation, error containment, and error recovery.  
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Compute Instances 

A “Compute Instance” is another grouping that can configure different levels of Compute power 
created within a GPU Instance, encapsulating all the compute resources (number of GPCs, 
Copy Engines, NVDEC units, etc.) that can execute work in the GPU Instance. By default, a 
single Compute Instance is created under each GPU Instance, exposing all the GPU compute 
resources available within the GPU Instance. A GPU Instance can be subdivided into multiple 
smaller Compute Instances to further split its compute resources. 

Compute Instances each support Volta-style MPS functionality, where multiple different CPU 
processes (host application contexts) can be combined into a single CUDA context and run on 
the GPU. The maximum number of MPS clients is proportional to Compute Instance size. MPS 
is fully supported in A100 and is particularly important for HPC use cases that demand the 
throughput of MPS for MPI. 

 
Example of multiple independent GPU Compute workloads running in parallel using a MIG configuration 
on an A100 GPU with three GPU Instances and variable numbers of Compute Instances within each 
GPU Instance. 

Figure 23. MIG Configuration with multiple independent GPU Compute 
workloads  
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Shows the creation of a four GPU slice GPU Instance, followed by creating two Compute Instances each 
with two GPCs. The Copy Engines (CE) and NVDEC decoders (DEC) are also depicted. 

Figure 24. Example MIG partitioning process  
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Compute Instances Enable Simultaneous Context Execution 

Compute Instances are what enable multiple contexts to run simultaneously on the GPU. A 
single Compute Instance can encompass one or more GPU slices, but a Compute Instance can 
also be configured to allow a single Sys Pipe to connect to multiple GPCs, L2 slices, and 
memory from other GPU slices. In such cases, Sys Pipes from other GPU slices in the GPU 
Instance are disabled.  

 
GPU Instance 0 has two Compute Instances, each with one Sys Pipe. (Note that unit sizes depicted do 
not correspond to actual physical area on the GPU die.)  

Figure 25. Example MIG config with three GPU Instances and four Compute 
Instances.  

Technically, a Compute Instance is defined as including one Sys Pipe with up to 7 GPCs within 
a GPU Instance. All applications sharing a Compute Instance share a single Sys Pipe, and each 
Compute Instance can context switch separately from other Compute Instances. Prior to A100, 
all GPCs context-switched together, but in A100, GPCs in different Compute Instances are 
context-switched separately, allowing each Sys Pipe to context switch with a subset of the 
GPCs, thereby allowing multiple Compute Instances to operate independently.   

Note that each Compute Instance also permits Volta-style MPS functionality, where multiple 
different CPU processes (application contexts) can be combined into a single application 
context and run on the GPU. 

In general, many MIG configurations are possible, with details being described in developer and 
system administrator documentation.  
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MIG Migration 

An important MIG feature to manage, tune, service, and load-balance vGPU (virtual GPU) 
virtual machine (VM) configurations is the ability to migrate vGPUs between GPU Instances on 
a single GPU, and more frequently between different GPUs in a cluster. The migration process 
is conceptually straightforward. State information of the GPU slices of a vGPU within a GPU 
Instance are saved and then restored onto another GPU Instance with the same number of 
GPU slices.  

When various GPUs in a cluster are only partially utilized, MIG migration allows moving and 
packing jobs onto fewer GPUs, reducing fragmentation, and often reducing the number of 
physical GPUs necessary to support a given number of vGPUs. This can free up certain GPUs 
to run larger jobs, or have the unused GPUs placed in power-saving mode to reduce data 
center costs. MIG migration also allows GPUs to be deloaded for servicing, without killing the 
jobs.  

Third-Generation NVLink 
The third-generation of NVIDIA’s high-speed NVLink interconnect is implemented in the NVIDIA 
Ampere architecture-based A100 GPU and the new NVSwitch. NVLink is a lossless, high-
bandwidth, low-latency shared memory interconnect, and includes resiliency features such as 
link-level error detection and packet replay mechanisms to guarantee successful transmission of 
data. 

The new NVLink significantly enhances multi-GPU scalability, performance, and reliability with 
more links per GPU, much faster GPU-GPU communication bandwidth, and improved error-
detection and recovery features. A100 GPUs can use NVLink links to access peer GPU memory 
at bandwidths much higher than achievable with PCI Express.  

The new NVLink has a data rate of 50 Gbit/sec per signal pair, nearly doubling the 25.78 
Gbits/sec rate in Tesla V100. Each link uses 4 differential signal pairs (4 lanes) in each direction 
compared to 8 signal pairs (8 lanes) in Volta. A single link provides 25 GB/second bandwidth in 
each direction similar to Volta GPUs, but uses only half the signals compared to Volta. The total 
number of NVLink links is increased to twelve in A100, versus six in Tesla V100, yielding a 
whopping 600 GB/sec total bandwidth for an entire A100 versus 300 GB/sec for Tesla V100.  

The twelve NVLink links in each A100 allow a variety of configurations with high-speed 
connections to other GPUs and switches. To meet the growing computational demands of larger 
and more complex DNNs and HPC simulations, the new DGX A100 system (see Appendix A) 
includes eight A100 GPUs connected by the new NVLink-enabled NVSwitch. Multiple DGX 
A100 systems can be connected via a networking fabric like Mellanox InfiniBand and Mellanox 
Ethernet to scale out data centers, creating very powerful, even supercomputer-class systems. 
More powerful NVIDIA DGX POD™ and NVIDIA DGX SuperPOD™ systems will include 
multiple DGX A100 systems to provide much greater compute power with strong scaling. 
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Note Third-Generation NVLink connectivity through NVSwitches. 

Figure 26. NVIDIA DGX A100 with Eight A100 GPUs  

All writes in the third-generation NVLink are now non-posted, allowing synchronization to be 
performed at the requester, and error attribution to be returned to a specific execution context. 
New features to improve the efficiency of small payload writes and dataless responses were 
also added. 

PCIe Gen 4 with SR-IOV 
The A100 GPU supports PCI Express Gen 4 (PCIe Gen 4) which provides 31.5 GB/sec of 
bandwidth per direction for x16 connections, double the bandwidth of PCIe 3.0/3. The faster 
speed is especially beneficial for A100 GPUs connecting to PCIe 4.0-capable CPUs, and for 
faster network interfaces, such as supporting 200 Gbit/sec InfiniBand for improved GPU cluster 
performance. A100 also supports Single Root Input/Output Virtualization (SR-IOV) that allows 
sharing and virtualizing of a single PCIe-connected GPU for multiple processes or Virtual 
Machines (VMs). A100 also allows a Virtual Function (VF) or Physical Function (PF) from a 
single SR-IOV PCIe-connected GPU to access a peer GPU over NVLink.  

Error and Fault Detection, Isolation, and Containment 
Improving GPU uptime and availability by detecting, containing, and often correcting errors and 
faults, rather than forcing GPU resets is critically important, especially in large multi-GPU 
clusters and single-GPU, multi-tenant environments such as MIG configurations. The NVIDIA 
A100 Ampere architecture GPU includes much new technology to improve error/fault attribution  
(attribute which applications are causing errors), isolation (isolate faulty applications so they do 
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not affect other applications running on the same GPU or in a GPU cluster), and containment 
(ensuring errors in one application do not leak and affect other applications).  
 
The new NVIDIA Ampere architecture fault handling technologies are particularly important for 
MIG environments to ensure proper isolation and security between clients sharing the single 
GPU. NVLink-connected GPUs now also have more robust error-detection and recovery 
features as described in the NVLink section above. Page faults at the remote GPU are sent 
back to the source GPU through NVLink. Remote access fault communication is a critical 
resiliency feature for large GPU computing clusters to help ensure faults in one process or VM 
do not bring down other processes or VMs.  

Additional A100 Architecture Features 
The NVIDIA A100 GPU includes a number of other new and improved features that enhance 
application performance and improve programmability. We list a few of those new features 
below. Also be sure to check out the NVIDIA Developer site for additional information.  

NVJPG Decode for DL Training 

The A100 GPU adds a new hardware-based JPEG decode feature. One of the fundamental 
issues in achieving high throughput for DL training / inference for images is the input bottleneck 
of JPEG decode. CPUs and GPUs are not very efficient for JPEG decode due to the serial 
operations used for processing image bits. Also, if JPEG decode is done in the CPU, PCIe 
becomes another bottleneck. A100 addresses these issues by adding a hardware JPEG decode 
engine. 

A100 includes a 5-core hardware JPEG decode engine called NVJPG. Applications can batch 
images into chunks of up to five images and pass onto NVJPG for processing. These images 
can be of heterogeneous sizes, though for best performance, images of similar sizes should be 
batched together wherever possible. 

JPEG decode formats supported: 

● YUV420 
● YUV422 
● YUV444 
● YUV400 
● RGBA 

 

Performance @ GPU boost clock (1410 MHz) for large image such as 1 Mpixel or above in 
Mpixels/sec is as follows: 

https://developer.nvidia.com/
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Table 6. NVJPG Decode Rate at different video formats 

  Mpixels/sec 

4:2:0 (10:1 compression ratio) 7000 

4:4:4 (10:1 compression ratio) 3335 

Note: For smaller images such as 224 x 224, Mpixels/sec can be 30-40% lower than above. 

Optical Flow Accelerator 

Optical f low and stereo disparity are two fundamental and related ways of analyzing images in 
computer vision. Optical f low measures the apparent motion of points between two images, 
while stereo disparity measures the (inverse) depth of objects from a system of two parallel 
calibrated cameras. 

 

Figure 27. Illustration of optical flow and stereo disparity 

Optical f low and stereo disparity are used in computer vision tasks across a broad range of 
applications including automotive and robotic navigation, movie production, video analysis and 
understanding, and augmented and virtual reality. The measurement of optical f low and stereo 
disparity have been studied for decades, but despite great improvements in the state of the art, 
they remain challenging problems, especially to obtain real time dense data at the pixel rates of 
modern cameras, which routinely exceed 50 Mpixels/second and can easily reach 10 times that.   



NVIDIA A100 Tensor Core GPU Architecture In-Depth 

56 
NVIDIA A100 Tensor Core GPU Architecture 
 

The GA100 Optical Flow Accelerator is a hardware module that supports both optical f low and 
stereo disparity estimation at high pixel rates. Quality and performance can be tuned through 
parameter selection.  

Atomics Improvements 

The A100 GPU builds on V100 atomic operation advances by improving throughput of atomic 
operations in global memory, which is especially beneficial for DL workloads. Many DL 
workloads use FP16 atomic operations during training and inference operations. A100 improves 
throughput of FP16 atomics by 11x and FP32 atomics by 2.7x over V100.  

NVDEC for DL 

A100 improves video decode capability significantly compared to V100. In a DL platform, input 
video is compressed in any of the industry standards, such as H264 / HEVC / VP9, etc. One of 
the significant challenges in achieving high end-to-end throughput in a DL platform is to be able 
to keep the input video decode performance matching the training / inference performance. 
Otherwise, the full DL performance of the GPU cannot be utilized. A100 makes a big leap in this 
area by adding five NVDEC (NVidia DECode) units. 

Comparison to V100: 

● 5 NVDECs in A100 compared to 1 NVDEC in V100 
● HEVC decode performance improvement per NVDEC 
● HEVC 4:4:4 support in A100 

Table 7. GA100 HW decode support 

  Bit depth Chroma format 

H264 8-bit 4:2:0 

HEVC 8/10/12 bit 4:2:0 / 4:4:4 

VP9 8/10/12 bit 4:2:0 

  

 

 

Table 8. Decode performance @ GPU boost clock (1410 MHz)  

(Measured in number of concurrent streams supported) 
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A100 # of Streams HEVC decode H264 decode VP9 decode 

4K30 44 22 31 

1080p30 157 75 108 

720p30 304 167 192 

  

Table 9. A100 vs V100 Decode Comparison @ 1080p30  

(Measured in number of concurrent streams supported) 

# of Streams HEVC decode H264 decode VP9 decode 

A100 1080p30 157 75 108 

V100 1080p30 22 16 22 

Video use cases: 

● Video classification / understanding 
● Intelligent video analytics on edge platform 
● Autonomous driving DL training 
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CUDA Advances for NVIDIA Ampere Architecture GPUs  
NVIDIA® CUDA® is a parallel computing platform and programming model created by NVIDIA 
to give application developers access to the massive parallel processing capability of NVIDIA 
GPUs. CUDA is the foundation for GPU acceleration of deep learning as well as a wide range of 
other computation- and memory-intensive applications ranging from astronomy, to molecular 
dynamics simulation, to computational f inance. Thousands of GPU-accelerated applications are 
built on the NVIDIA CUDA parallel computing platform. The flexibility and programmability of 
CUDA have made it the platform of choice for researching and deploying new deep learning and 
parallel computing algorithms. 

NVIDIA Ampere architecture GPUs are designed to improve GPU programmability and 
performance, while also reducing software complexity. NVIDIA Ampere architecture GPUs and 
CUDA programming model advances accelerate program execution and lower the latency and 
overhead of many operations. CUDA 11 provides programming and API support for Third-
Generation Tensor Cores, Sparsity features, CUDA Graphs, Multi-Instance GPU, L2 cache 
residency controls, and a number of other new capabilities of the NVIDIA Ampere architecture.  

The sections below cover some of the key NVIDIA Ampere architecture-related CUDA 
advances. 

CUDA Task Graph Acceleration  

CUDA Task Graph Basics 

Many GPU-intensive applications such as deep neural network training and scientific 
simulations have an iterative structure where the same workflow is executed repeatedly. Using 
CUDA Streams for such workflows requires that the work be resubmitted to the GPU by the 
CPU with every iteration, which consumes both time and CPU resources. CUDA Task Graphs 
were introduced as part of the CUDA 10 release in 2018, and provide a more efficient model for 
submitting work to the GPU. A task graph consists of a series of operations, such as memory 
copies and kernel launches, connected by dependencies, and is defined separately from its 
execution. Task graphs enable a define-once/run-repeatedly execution flow. A predefined task 
graph allows launch of any number of kernels in one single operation, greatly improving 
application efficiency and performance.  

Execution of work on the GPU breaks down into three stages: launch, grid initialization, and 
kernel execution. For GPU kernels with short runtimes in particular, these overheads can be a 
significant fraction of the overall end-to-end execution time. 

Separating out the definition of a task graph from its execution (where the task graph is 
executed repeatedly) reduces CPU kernel launch costs significantly. Task graphs also enable 
the CUDA driver to perform a number of optimizations because the whole workflow is visible to 
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the driver, including execution, data movement, and synchronization interactions, which can 
improve execution performance in a variety of cases. 

 

One aspect to notice is that efficiency gains benefit different processors: CPU execution time benefits for 
its single launch operation, while GPU execution time benefits from a per-kernel savings, which can add 
up significantly as the number of nodes in the graph increases. 

Figure 28. Execution Breakdown for Sequential 2us Kernels.  

Task Graph Acceleration on NVIDIA Ampere Architecture GPUs  

The A100 GPU accelerates a number of optimizations enabled by task graphs. These fall into 
two categories: launch optimizations and execution dependency optimizations. These 
optimizations are aimed at inter-kernel latency and overhead reduction, and are all possible 
because in a task graph the whole workflow is known in advance. They are particularly effective 
for strong-scaled workloads with very short duration kernels, for which overheads comprise a 
significant fraction of runtime. 
  
Launch optimizations rely on the graph topology identifying the whole workflow, enabling 
efficient upload of kernel data that will be needed to both launch and run the work. First the 
initial launch of a graph is able to submit multiple work items to the GPU in a single operation. 
This relates directly to a large reduction in launch overhead as seen by the CPU. Next, the A100 
GPU can use dependency information built into the graph to upload kernel information more 
efficiently into the SMs for execution, significantly reducing the latency before the first instruction 
in a kernel starts to run. 
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Comparing CPU cost of whole-graph launch vs. the equivalent time to launch without graphs. Graph 
launch provides a significant boost on any hardware, but A100’s launch optimizations provide a significant 
gain, in particular for graphs with more complex topologies. 

Figure 29. Impact of Task Graph acceleration on CPU launch latency  

 
Execution dependency optimizations address more complex graphs where the workflow forks 
and re-joins. The A100 GPU architecture includes the capability to follow multiple dependencies 
in a fork, automatically executing dependent kernels with the shortest possible latency. This 
translates directly into significant gains for both launch and grid-to-grid execution latency for 
topologically complex graphs. 
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Comparing execution latencies for work launched as a graph vs. as independent kernels in CUDA 
streams. The NVIDIA Ampere microarchitecture has improved dependency tracking, able to execute even 
complex workflows very efficiently. 
Figure 30. Grid-to-Grid Latency Speedup using CUDA graphs  

 

For more details on the use CUDA Task Graphs refer to the CUDA Programming Guide, and 
Getting Started with CUDA Graphs.  

CUDA Asynchronous Copy Operation 
CUDA 11 includes a new asynchronous copy (async copy) API to take advantage of the A100 
GPU’s hardware-accelerated direct-copy-to-shared functionality. Async copy performs an 
asynchronous (non-blocking) direct memory transfer from global memory to shared memory, 
bypassing the SM threads and combining the functions of separate “load from global memory 
into a register”, and “write to shared memory from a register” operations into a single, efficient 
operation.  

Async copy eliminates the need for intermediate staging of data through the register file (RF), 
reducing register file bandwidth. It also efficiently uses memory bandwidth and reduces power 
consumption. As the name implies, async copy works asynchronously, allowing other 
computations to occur during global-to-shared memory copies. Async copy is able to notify the 
program of copy completion via the GPU’s new barrier feature (see next section). 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#L2_access_intro
https://devblogs.nvidia.com/cuda-graphs/
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Bypassing L1 and the register file can significantly accelerate memory copy performance, 
especially for multiple successive async-copy operations that copy large amounts of data from 
global to shared memory.  

Two variants of the async copy instruction are available for different usage scenarios. BYPASS, 
which bypasses L1 cache and the register file as described above, and ACCESS which saves 
data to L1 for subsequent accesses and reuse.  

 

The upper pipeline depicts the case of not using async copy, loading from DRAM or L2, through L1, then 
into the register file (RF), and finally storing from RF to shared memory (SMEM). The lower two pipelines 
show async copy fetching from DRAM or L2 and directly storing into shared memory, with optional L1 
cache access. 

Figure 31. A100 Asynchronous Copy vs No Asynchronous Copy 

From a user perspective, async copy behaves similarly to executing separate load-global and 
store-shared instructions, but without consuming thread resources for temporary storage. The 
instruction allows independent global and shared memory addresses per thread. Programs 
must use barriers to ensure proper ordering of writes and visibility of loads and stores among 
threads in a thread block. New asynchronous per-thread barriers described in the following 
section accomplish that task.  
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Figure 32. Synchronous vs Asynchronous Copy to Shared Memory 

Asynchronous Barriers 
NVIDIA A100 GPU provides hardware-accelerated barriers in shared memory. These barriers 
are made available in CUDA 11 in the form of ISO C++-conforming barrier objects. An 
asynchronous barrier differs from a normal single-stage barrier in that the notif ication by a 
thread that it has reached the barrier (the “arrival”) is separated from the operation to wait for 
others to arrive at the barrier (the “wait”). This increases execution efficiency by allowing a 
thread to perform additional operations unrelated to the barrier, making more efficient use of the 
wait time. Asynchronous barriers can be used to implement producer-consumer models using 
CUDA threads, or can be used simply as a single-stage barrier if desired. 
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An asynchronous barrier allows a thread to indicate that its data is ready and then continue to work on 
independent operations, postponing the wait so that idle time is reduced. This is a form of asynchronous 
processing known as pipelining, and is commonly used to hide high latency operations such as memory 
loads (see “async copy”, above). 

Figure 33. A100 Asynchronous Barriers  

The new Asynchronous Barriers also provide a significant advancement in synchronization 
granularity compared with barriers on previous architectures, by allowing hardware-accelerated 
synchronization of any subset of CUDA threads within the block. Previous architectures only 
accelerate synchronization at a whole-warp or whole-block level. Barriers can be used to 
overlap asynchronous copies from global memory into shared memory (described in the 
previous section) by having the copy operation signal (“arrive on”) the barrier when it is 
complete. This allows overlap of the copy with other execution in the SM, hiding the latency of 
the copy and increasing efficiency.   

L2 Cache Residency Control 
When a CUDA kernel accesses a data region in the global memory repeatedly, such data can 
be considered to be “persisting”. On the other hand, if the data is only accessed once, such data 
can be considered to be “streaming”. DL workloads in particular have a dependence upon 
persisting data accesses. 



CUDA Advances for NVIDIA Ampere Architecture GPUs 

65 
NVIDIA A100 Tensor Core GPU Architecture 
 

Starting with CUDA 11.0, devices of compute capability 8.0 like A100 have the capability to 
influence persistence of data in the L2 cache and set aside a portion of L2 cache for persistent 
data accesses, allowing higher bandwidth and lower latency accesses to the global memory.  

The capability to influence the persistence of data in the L2 cache allows A100 GPUs to use the 
large 40MB L2 cache more efficiently. For example, recurrent weights in many LSTM networks 
can be made persistent in L2 and re-used between GEMM operations. A100 allows L2 cache to 
be set-aside for persistent accesses in 1/16th increments (2.5 MB). 

Persistent accesses have prioritized use of this set-aside portion of L2 cache. Normal or 
streaming accesses to global memory can only utilize this portion of L2 when it is unused by 
persistent accesses. L2 persistence can be set up using CUDA Streams or CUDA Graphs. 
However, note that when the GPU is configured in Multi-Instance GPU (MIG) mode, the L2 
cache set-aside functionality is disabled. 

Details including how to set up and use L2 cache set-aside areas for persistent accesses, how 
multiple CUDA kernels that execute concurrently can share the L2 set-aside cache, and how to 
clear and reset the set-aside area for non-persistent future accesses are provided in the CUDA 
Programming Guide. 

Residency of data in the L2 cache can be managed via an address-range-based window which 
designates an address range for which all read and write accesses will be cached persistently in 
L2. The memory operations themselves require no annotation. 

A100 also supports finer-grained per-memory-operation controls where L2 residency is 
specified on a per-access basis. The access-based controls include fractional allocation based 
on address hash, and cover use-cases like producer-consumer buffers. Please see the CUDA 
Programming Guide for specifics on how these features are supported. 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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Example of performing histograms in global memory. Data set of 256 million integer elements. Histogram 
size f ive Million integer bins. 

Figure 34. A100 L2 residency control example  

When performing histograms using a large number of bins that do not fit in shared memory, one 
must compute histograms by directly performing atomic operations in GPU global memory. In  
Figure 34 above, we compute a histogram of five million integer bins using a dataset of 256 
million integers. Five million integer bins have a footprint of 20 MB, hence they do not fit in 
shared memory, but can fit in the GPU’s L2 Cache. By marking the histogram bin region 
persistent, we can achieve 2.5x speedup over V100, and a speedup of 43% over an A100 
scenario that does not use residency control. 

Cooperative Groups  
Cooperative Groups extends its programming model (originally introduced in CUDA 9) to 
encapsulate the asynchronous memory copy in a group-wide collective. This utilizes A100’s 
hardware acceleration for the non-blocking memory copy from global to shared memory as well 
as providing (blocking) software fallbacks in the other direction and on earlier architectures.  

Cooperative Groups uses the threads named in the group to distribute the workload 
automatically and as efficiently as possible, deducing the correct alignment and data transfer 
size per thread. While the default operation behaves as a single-stage pipeline, overloads are 
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provided to extend this to multi-stage pipelines in cooperation with the new memory pipeline 
object provided by CUDA. 

Once the transfers are kicked off, the data can be read following a call to wait, which signals 
that the pipeline is empty or that the corresponding stage has completed moving data to shared 
memory. 

Using A100’s powerful new warp reduce instruction, Cooperative Groups expands its set of 
collectives with a reduce API. This performs a reduction operation on the data provided by each 
thread named in the group passed in. The hardware can accelerate arithmetic ADD, MIN, or 
MAX operations and the logical AND, OR, or XOR. Additional types and operations are 
implemented in software as well as fallbacks on older generation hardware. 

Cooperative launches continue to provide interesting benefits to CUDA developers, and we’ve 
been able to reduce grid synchronization overhead by up to 30%, and remove the need for 
separate compilation when writing cooperative kernels and taking advantage of grid groups. 

 

Pre-A100 warp-scope reductions are based on the SHFL operation and require 5 steps to complete, 
following the data exchange pattern shown on the left. The A100 GPU has hardware-accelerated 
reductions which produce a result in a single step. 

Figure 35. Warp-Wide Reduction 
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Conclusion 
NVIDIA's mission is to accelerate the work of the da Vincis and Einsteins of our time. Scientists, 
researchers, and engineers are focused on solving some of the world’s most important 
scientif ic, industrial, and big data challenges using high-performance computing (HPC) and 
artif icial intelligence (AI). The NVIDIA® A100 Tensor Core GPU delivers the next giant leap in 
our accelerated data center platform, providing unmatched acceleration at every scale and 
enabling these innovators to do their life's work in their lifetime. A100 powers numerous 
application areas including HPC, Genomics, 5G, Rendering, Deep Learning, Data Analytics, 
Data Science, and Robotics. 
 
Advancing the most important HPC and AI applications today—personalized medicine, 
conversational AI, and deep recommender systems—requires researchers to go big. A100 
powers the NVIDIA data center platform that includes Mellanox HDR InfiniBand (IB), NVIDIA 
NVSwitch, NVIDIA HGX-A100, and the Magnum IO SDK for scaling up. This integrated team of 
technologies efficiently scales to tens of thousands of GPUs to train the most complex AI 
networks at unprecedented speed. 
  
The new Multi-Instance GPU (MIG) of the A100 GPU can partition each A100 into as many as 
seven GPU accelerators for optimal utilization, effectively improving GPU resource utilization 
and GPU access to more users and GPU-accelerated applications. With A100’s versatility, 
infrastructure managers can maximize the utility of every GPU in their data center to meet 
different-sized performance needs, from the smallest job to the biggest multi-node workload.  
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Appendix A - NVIDIA DGX A100 
Today’s enterprise needs to scale AI to transform their business and not only survive, but thrive 
in challenging times. However, most enterprises lack the infrastructure and know-how to 
operationalize AI at scale. Their dependency on legacy systems and architecture has resulted in 
data centers that are over-spent on servers, inefficient, and unable to meet the unique demands 
of training, inference, and analytics.  

NVIDIA DGX A100 - The Universal System for AI Infrastructure 

DGX A100 is the 3rd generation of the world’s most advanced, purpose-built AI system. It 
delivers an unprecedented 5 PFLOPS (petaFLOPS) of performance in a single system. DGX 
A100 revolutionizes the enterprise data center with a new construct for infrastructure that’s 
designed to unify all AI workloads on a new, universal platform and architecture. DGX A100, 
powered by A100 and MIG, transforms the enterprise data center. It enables architects to plan, 
deploy and scale their data center, now optimized for heterogeneous workloads using 
homogeneous infrastructure. DGX A100 gives AI innovators the power they need to do their 
most important work, from development to deployment at scale. 

 

Figure 36. NVIDIA DGX 100 System 
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The performance of DGX A100 can be easily scaled up by connecting several thousands of 
DGX A100 systems, or scaled down for unparalleled efficiency by slicing each A100 GPU in the 
system into seven separate GPU Instances. Multi-Instance GPU (MIG) innovation is a 
breakthrough technology from NVIDIA, providing up to 56 discrete accelerators in a single DGX 
A100, each fully isolated and secured at the hardware level with their own high bandwidth 
memory, cache, and compute cores. MIG allows users to mix and match multiple training and 
inference jobs in parallel on the same system with dedicated resources for optimal utilization.  

Running optimized software from NVIDIA GPU Cloud (NGC), the combination of dense 
compute power and complete workload flexibility makes DGX A100 an ideal choice for both 
single node deployments and large scale Slurm and Kubernetes clusters deployed with NVIDIA 
DeepOps. 

Game-changing Performance 

The eight NVIDIA A100 GPUs in the DGX A100 use the new high-performance third-generation 
NVLink to interconnect through six new NVSwitches with 4.8 TB/s total bidirectional bandwidth 
(2.4 TB/s full-duplex). Each NVIDIA A100 GPU features third-generation Tensor Cores with 
TF32 precision and sparsity that provides up to 20x the performance of standard FP32 FMA 
operations on V100 with zero code changes. DGX A100 delivers up to 6x the performance of 
V100 based DGX-1 for AI training. DGX A100 also sets a new bar for compute density by 
packing up to 5 PFLOPS of AI performance into a 6U form factor. 

  
 
Figure 37. DGX A100 Delivers unprecedented AI performance for training and 
inference. 
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Unmatched Data Center Scalability 
With the fastest IO architecture of any DGX system, NVIDIA DGX A100 is the foundational 
building block for large AI clusters such as NVIDIA DGX SuperPOD, the enterprise blueprint for 
scalable AI infrastructure. DGX A100 debuts next generation NVLink that is 10x faster than 
PCIe Gen 4, a new NVSwitch, and eight Mellanox ConnectX-6 HDR InfiniBand adapters each 
running at 200 Gb/s providing a high-speed fabric for large scale AI workloads. DGX A100 also 
supports the Magnum IO software SDK for efficient scaling of applications to tens of thousands 
of GPUs. The combination of massive GPU-accelerated compute, state-of-the-art networking 
hardware, and software optimizations means NVIDIA DGX A100 can scale to hundreds or 
thousands of nodes to meet the biggest challenges, such as conversational AI and large-scale 
image classification.  

Fully Optimized DGX Software Stack 

The DGX A100 software has been built to run AI workloads at scale. A key goal is to enable 
practitioners to deploy deep learning frameworks, data analytics, and HPC applications on the 
DGX A100 with minimal setup effort. The design of the platform software is centered around a 
minimal OS and driver install on the server, and provisioning of all application and SDK software 
available through the NGC Private Registry. 

The NGC Private Registry provides GPU-optimized containers for deep learning (DL), machine 
learning (ML), and high-performance computing (HPC) applications, along with pretrained 
models, model scripts, Helm charts, and software development kits (SDKs). This software has 
been developed, tested, and tuned on DGX systems, and is compatible with all DGX products: 
DGX-1, DGX-2, DGX Station, and DGX A100.  The NGC Private Registry also provides a 
secure space for storing custom containers, models, model scripts, and Helm charts that can be 
shared with others within the enterprise.  Learn more about the NGC Private Registry in this 
blog post. 

Figure 38 shows how all these pieces fit together as part of the DGX software 
stack. 

 

https://www.nvidia.com/en-us/data-center/resources/nvidia-dgx-superpod-reference-architecture/
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html
https://devblogs.nvidia.com/securing-and-accelerating-end-to-end-ai-workflows-with-the-ngc-private-registry/
https://devblogs.nvidia.com/securing-and-accelerating-end-to-end-ai-workflows-with-the-ngc-private-registry/
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Figure 38. NVIDIA DGX Software Stack 

The DGX software stack includes the following major components. 

● The NVIDIA CUDA Toolkit is the development environment for creating high 
performance GPU-accelerated applications. CUDA 11 enables software 
developers and devops engineers to reap the benefits of the major innovations in 
the new NVIDIA A100 GPU, including the following: 

○ Support for new input data type formats and performance optimizations in 
CUDA libraries for linear algebra 

○ configuration and management of MIG instances on Linux operating 
systems, part of the DGX Software stack 

Read more about what’s new in the CUDA 11 Features Revealed Devblog. 

https://developer.nvidia.com/cuda-toolkit
https://devblogs.nvidia.com/parallelforall/cuda-11-features-revealed/
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● The NVIDIA Container Toolkit allows users to build and run GPU accelerated 
Docker containers. The toolkit includes a container runtime library and utilities to 
automatically configure containers to leverage NVIDIA GPUs.  

● GPU-accelerated containers feature software to support: 
○ Deep learning frameworks for training, such as PyTorch, MXNet, and 

TensorFlow  
○ Inference platforms, such as TensorRT   
○ Data analytics, such as RAPIDS, the suite of software libraries for 

executing end-to-end data science and analytics pipelines entirely on 
GPUs.  

○ High-Performance Computing (HPC), such as CUDA-X HPC, OpenACC, 
and CUDA®.  

For more information on DGX A100 please see our blog Defining AI Innovation with DGX A100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/index.html
http://docs.nvidia.com/deeplearning/dgx/mxnet-release-notes/index.html
http://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/index.html
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
http://rapids.ai/
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/openacc
https://developer.nvidia.com/cuda-toolkit
https://devblogs.nvidia.com/defining-ai-innovation-with-dgx-a100/


Appendix A - NVIDIA DGX A100 
 

74 
NVIDIA A100 Tensor Core GPU Architecture 
 

NVIDIA DGX A100 System Specifications 
Table 10. NVIDIA DGX A100 System Specifications 

Specification DGX-1  DGX A100 

GPUs 8x Tesla V100 GPUs 8x NVIDIA A100 GPUs 

TFLOPS 960 (GPU FP16) + 3 (CPU 
FP32) 

5 (GPU Tensor PFLOP) + 3 (CPU 
FP32) 

GPU Memory 32 GB per GPU / 256 GB per 
DGX-1 Node 

40GB per GPU/320 GB per DGX 
A100 Node 

 
CPU Dual 20-core Intel® Xeon® E5-

2698 v4 2.2 GHz 
2-socket, 128 core AMD Rome 
7742, 2.25 GHz (base), 3.4GHz 
(Max boost) 

System Memory 512 GB  2133 MHz DDR4 
LRDIMM 

1 TB 3200 MHz DDR4 base 
config, additional 1TB can be 
order to get to 2TB max 

Storage Data cache drives: 7TB (4x 
1.92TB SSD) 

OS drive: 480 GB SAS SSDs 

 

 

Data cache drives: 15TB (4x 
3.84TB gen4 NVME. Can add 
15TB optional to get 30TB max 

OS drives: 2x 1.92TB NVME 
SSDs 

Network Dual 10 GbE 

4 Mellanox 100 Gb/sec 
InfiniBand/100GigE 

8 single port Mellanox ConnectX-6 
HDR InfiniBand 200Gb/s 

1 dual-port Mellanox ConnectX-6 
10/25/40/50/100/200Gb/s Ethernet 

Optional 10th dual-port Mellanox 
ConnectX-6 
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System Weight 134 lbs 271 lbs 

System 
Dimensions 

866 L x 444 W x 131 H (mm) Height: 10.4 in (264.0 mm) 

Width: 19.0 in (482.3 mm) Max 

Length: 35.3 in (897.1 mm) Max 

Rack Units 3 RUs 6 RUs 

Power 3200 W (Max). Four 1600 W 
load-balancing power supplies 
(3+1 redundant), 200-240 V(ac), 
10 A 

6500 W (Max). Six 3kW power 
supplies. 3+3 redundant, 200-240 
V(ac), 16 A 

Operating 
 

 

10 - 35°C 5oC - 35oC 

Cooling Air Air 
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Appendix B - Sparse Neural Network Primer 
 
Even though GPU compute performance has rapidly increased to keep up with the growing 
complexity of DNNs, scientists are researching new techniques to reduce the compute, 
memory, and energy used in training these dense networks, and also to reduce the size of the 
trained networks such that they can fit in edge devices that have small memories. Techniques to 
prune a dense network into a sparse network that delivers the same level of accuracy is being 
widely and actively researched by industry and academia. 
 

 
Figure 39. Dense Neural Network 

 
Deep Neural Networks (DNNs) consist of several layers of neurons or nodes that are 
interconnected with each other. Typically, each neuron or node in a fully connected DNN is 
connected with every neuron in the next layer of the network. This means that if a network has n 
nodes in a layer and is connected to n nodes in the next layer, the number of interconnections 
between the two layers would be n2. The complexity of new neural networks has rapidly 
increased over the last few years resulting in DNNs that contain tens to hundreds of layers, and 
thousands of neurons with millions of interconnections.  
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Pruning and Sparsity 
Pruning, in a nutshell, is the technique used to zero out or remove nodes and interconnections 
that have little to no contribution to the final accuracy of the network. For AI training, this could 
mean zeroing out many of the weight and activation matrices that have near-zero values, and 
retraining to optimize the remaining weights. For inferencing it could be done by rounding down 
to zero the values of weights that have near zero values, or removing from the network the 
interconnections and nodes that have near zero values. In other words, after pruning, the 
network is now sparse due to fewer nodes and interconnections. Numerous research papers 
have explored various techniques of pruning for sparse networks and these can be found online 
for further reading on this topic. 
 
Exploiting sparsity in a neural network delivers several performance benefits. First, compute 
throughput can be increased by skipping computation on zero-value matrix elements. Second, 
memory bandwidth usage can be reduced by fetching only the non-zero elements. Third, for 
latency-bound inferencing applications, latency can be reduced by fetching more of the non-
zero values from memory and storing them locally on-chip.  

Fine-Grained and Coarse-Grained Sparsity 
Research on sparsity can be generally split into fine-grained sparsity, which explores zeroing 
out specific weights distributed across the neural network, and coarse-grained sparsity, which 
explores zeroing out entire sub-networks of a neural network.  
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Figure 40. Fine-Grained Sparsity    

A network with fine-grained sparsity would have the same number of nodes, but fewer edges 
irregularly distributed across the network. As seen in Figure 40, the amount of data fetched from 
memory and computations required to compute the output of each node would vary from node 
to node. This leads to irregular memory accesses and load balancing issues that reduce the 
parallel nature of compute workload and thus reducing GPU compute throughput. 
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A network pruned for coarse-grained sparsity (Figure 41) will have entire sub-sections of the 
network removed. While this helps maintain the parallel nature of the workload and improves 
throughput, a larger loss in accuracy may be undesirable. 
 
 

 
Figure 41. Coarse Grained Sparsity 
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Fine-grained structured sparsity, as supported in the NVIDIA A100 GPU, allows the network 
to be sparse, but requires each node to perform the same amount of data fetches and 
computation. The below Figure 42 represents a network with fine-grained structured sparsity 
where every node in the second and third layer have an equal number of sparse connections.  
 

 
Fine Grained Structured Sparsity results in balanced workload distribution and better utilization of 
compute nodes. The pruned edges represented by the lighter colored connections would be represented 
by zero values in the weight matrices. 

Figure 42. Fine Grained Structured Sparsity 

 
Large amounts of research have been published by both academia and the AI industry on 
sparsity. But no standard practice of using sparsity has been established to optimize compute 
throughput without compromising accuracy. Fine-grained structured sparsity as implemented on 
NVIDIA A100, along with the simple and universal recipes provided by NVIDIA to sparsify deep 
neural networks, results in virtually no loss in accuracy based on evaluation across various 
popular neural networks. Table 11 below compares the accuracy achieved with fine tuning using 
2:4 sparsity to training using dense matrices. 
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Table 11. Accuracy achieved on various networks with 2:4 fine grained 
structured sparsity 

Neural Network Accuracy achieved with 
Dense FP16 Matrices 

Accuracy achieved with 2:4 
sparse FP16 Matrices 

Image Classification. Training Dataset - Imagenet. Accuracy metric = Top-1 

ResNet-50 76.6 76.8 

Inception v3 77.1 77.1 

Wide ResNet-50 78.5 78.4 

VGG19 75.0 75.0 

ResNeXt-101-32x8d 79.3 79.5 

Image Segmentation and Detection. Training Dataset - COCO 2017. Accuracy 
metric = bbox AP 

MaskRCNN-ResNet-50 37.9 37.9 

SSD-R50 24.8 24.8 

Natural Language Processing. Training Dataset - En-De WMT’14. Accuracy metric 
= BLEU score 

GNMT 24.6 24.9 

FairSeq Transformer 28.2 28.5 

Natural Language Modeling. Accuracy metric = BPC for Transformer XL on enwik8 
and F1 score for BERT on SQuAD v1.1 

Transformer XL 1.06 1.06  

BERT Base 87.6  88.1  

BERT Large 91.1  91.5  
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of such information. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents 
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